Advertisement

Recurrent Neural Network Architectures for Event Extraction from Italian Medical Reports

  • Natalia Viani
  • Timothy A. Miller
  • Dmitriy Dligach
  • Steven Bethard
  • Carlo Napolitano
  • Silvia G. Priori
  • Riccardo Bellazzi
  • Lucia Sacchi
  • Guergana K. Savova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10259)

Abstract

Medical reports include many occurrences of relevant events in the form of free-text. To make data easily accessible and improve medical decisions, clinical information extraction is crucial. Traditional extraction methods usually rely on the availability of external resources, or require complex annotated corpora and elaborate designed features. Especially for languages other than English, progress has been limited by scarce availability of tools and resources. In this work, we explore recurrent neural network (RNN) architectures for clinical event extraction from Italian medical reports. The proposed model includes an embedding layer and an RNN layer. To find the best configuration for event extraction, we explored different RNN architectures, including Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). We also tried feeding morpho-syntactic information into the network. The best result was obtained by using the GRU network with additional morpho-syntactic inputs.

Keywords

Information extraction Natural language processing Neural network models 

References

  1. 1.
    Meystre, S.M., Savova, G.K., Kipper-Schuler, K.C., Hurdle, J.F.: Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med. Inf. 35, 128–144 (2008)Google Scholar
  2. 2.
    Goldberg, Y.: A primer on neural network models for natural language processing. arXiv:1510.00726 (2015)
  3. 3.
    Li, P., Huang, H.: Clinical information extraction via convolutional neural network. arXiv:1603.09381 (2016)
  4. 4.
    Hammerton, J.: Named entity recognition with long short-term memory. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003-Volume 4, pp. 172–175 (2003)Google Scholar
  5. 5.
    Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. arXiv:1603.01360 (2016)
  6. 6.
    Mesnil, G., He, X., Deng, L., Bengio, Y.: Investigation of recurrent-neural-network architectures and learning methods for spoken language understanding. In: Proceedings of Interspeech 2013 (2013)Google Scholar
  7. 7.
    Bonadiman, D., Severyn, A., Moschitti, A.: Deep neural networks for named entity recognition in Italian. In: Proceedings of CLiC-IT 2015 (2015)Google Scholar
  8. 8.
    Graves, A.: Supervised Sequence Labelling with Recurrent Neural Networks. Studies in Computational Intelligence. Springer, Heidelberg (2012)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)CrossRefGoogle Scholar
  10. 10.
    Mikolov, T., Yih, W., Zweig, G.: Linguistic regularities in continuous space word representations. In: Proceedings of NAACL-HLT 2013, pp. 746–751 (2013)Google Scholar
  11. 11.
    Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Lyding, V., Stemle, E., Borghetti, C., Brunello, M., Castagnoli, S., Dell’Orletta, F., Dittmann, H., Lenci, A., Pirrelli, V.: The PAISA corpus of italian web texts. In: Proceedings of the WaC-9 Workshop, pp. 36–43 (2014)Google Scholar
  13. 13.
    Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. arXiv:1409.1259 (2014)

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Natalia Viani
    • 1
  • Timothy A. Miller
    • 2
  • Dmitriy Dligach
    • 3
  • Steven Bethard
    • 4
  • Carlo Napolitano
    • 5
  • Silvia G. Priori
    • 5
    • 6
  • Riccardo Bellazzi
    • 1
    • 5
  • Lucia Sacchi
    • 1
  • Guergana K. Savova
    • 2
  1. 1.Department of Electrical, Computer and Biomedical EngineeringUniversity of PaviaPaviaItaly
  2. 2.Boston Children’s Hospital and Harvard Medical SchoolBostonUSA
  3. 3.Department of Computer ScienceLoyola University ChicagoChicagoUSA
  4. 4.School of InformationUniversity of ArizonaTucsonUSA
  5. 5.IRCCS Istituti Clinici Scientifici MaugeriPaviaItaly
  6. 6.Department of Molecular MedicineUniversity of PaviaPaviaItaly

Personalised recommendations