Discovering Discriminative and Interpretable Patterns for Surgical Motion Analysis

  • Germain Forestier
  • François Petitjean
  • Pavel Senin
  • Fabien Despinoy
  • Pierre Jannin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10259)

Abstract

The analysis of surgical motion has received a growing interest with the development of devices allowing their automatic capture. In this context, the use of advanced surgical training systems make an automated assessment of surgical trainee possible. Automatic and quantitative evaluation of surgical skills is a very important step in improving surgical patient care. In this paper, we present a novel approach for the discovery and ranking of discriminative and interpretable patterns of surgical practice from recordings of surgical motions. A pattern is defined as a series of actions or events in the kinematic data that together are distinctive of a specific gesture or skill level. Our approach is based on the discretization of the continuous kinematic data into strings which are then processed to form bags of words. This step allows us to apply discriminative pattern mining technique based on the word occurrence frequency. We show that the patterns identified by the proposed technique can be used to accurately classify individual gestures and skill levels. We also present how the patterns provide a detailed feedback on the trainee skill assessment. Experimental evaluation performed on the publicly available JIGSAWS dataset shows that the proposed approach successfully classifies gestures and skill levels.

Keywords

Surgical motion analysis Skill assessment Pattern mining 

Notes

Acknowledgement

This work was supported by the Australian Research Council under award DE170100037. This material is based upon work supported by the Air Force Office of Scientific Research, Asian Office of Aerospace Research and Development (AOARD) under award number FA2386-16-1-4023.

References

  1. 1.
    Tsuda, S., Scott, D., Doyle, J., Jones, D.B.: Surgical skills training and simulation. Curr. Probl. Surg. 46(4), 271–370 (2009)CrossRefGoogle Scholar
  2. 2.
    Forestier, G., Petitjean, F., Riffaud, L., Jannin, P.: Optimal sub-sequence matching for the automatic prediction of surgical tasks. In: Holmes, J.H., Bellazzi, R., Sacchi, L., Peek, N. (eds.) AIME 2015. LNCS (LNAI), vol. 9105, pp. 123–132. Springer, Cham (2015). doi:10.1007/978-3-319-19551-3_15 CrossRefGoogle Scholar
  3. 3.
    Dlouhy, B.J., Rao, R.C.: Surgical skill and complication rates after bariatric surgery. N. Engl. J. Med. 370(3), 285 (2014)CrossRefGoogle Scholar
  4. 4.
    Senin, P., Malinchik, S.: SAX-VSM: interpretable time series classification using SAX and vector space model. In: IEEE International Conference on Data Mining, pp. 1175–1180 (2013)Google Scholar
  5. 5.
    Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Discov. 15(2), 107 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)CrossRefMATHGoogle Scholar
  7. 7.
    Gao, Y., Vedula, S.S., Reiley, C.E., Ahmidi, N., Varadarajan, B., Lin, H.C., Tao, L., Zappella, L., Béjar, B., Yuh, D.D., et al.: JHU-ISI gesture and skill assessment working set (JIGSAWS): a surgical activity dataset for human motion modeling. In: Modeling and Monitoring of Computer Assisted Interventions (M2CAI)-MICCAI Workshop, pp. 1–10 (2014)Google Scholar
  8. 8.
    Reiley, C.E., Hager, G.D.: Decomposition of robotic surgical tasks: an analysis of subtasks and their correlation to skill. In: Modeling and Monitoring of Computer Assisted Interventions (M2CAI) – MICCAI Workshop (2009)Google Scholar
  9. 9.
    Reiley, C.E., Plaku, E., Hager, G.D.: Motion generation of robotic surgical tasks: learning from expert demonstrations. In: IEEE International Conference on Engineering in Medicine and Biology Society, pp. 967–970 (2010)Google Scholar
  10. 10.
    Béjar Haro, B., Zappella, L., Vidal, R.: Surgical gesture classification from video data. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 34–41. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33415-3_5 CrossRefGoogle Scholar
  11. 11.
    Zappella, L., Béjar, B., Hager, G., Vidal, R.: Surgical gesture classification from video and kinematic data. Med. Image Anal. 17(7), 732–745 (2013)CrossRefGoogle Scholar
  12. 12.
    Zia, A., Sharma, Y., Bettadapura, V., Sarin, E.L., Ploetz, T., Clements, M.A., Essa, I.: Automated video-based assessment of surgical skills for training and evaluation in medical schools. Int. J. Comput. Assist. Radiol. Surg. 11(9), 1623–1636 (2016)CrossRefGoogle Scholar
  13. 13.
    Reiley, C.E., Hager, G.D.: Task versus subtask surgical skill evaluation of robotic minimally invasive surgery. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 435–442. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04268-3_54 CrossRefGoogle Scholar
  14. 14.
    Despinoy, F., Bouget, D., Forestier, G., Penet, C., Zemiti, N., Poignet, P., Jannin, P.: Unsupervised trajectory segmentation for surgical gesture recognition in robotic training. IEEE Trans. Biomed. Eng. 63(6), 1280–1291 (2015)CrossRefGoogle Scholar
  15. 15.
    Gao, Y., Vedula, S.S., Lee, G.I., Lee, M.R., Khudanpur, S., Hager, G.D.: Unsupervised surgical data alignment with application to automatic activity annotation. In: IEEE International Conference on Robotics and Automation, pp. 4158–4163 (2016)Google Scholar
  16. 16.
    Zhou, Y., Ioannou, I., Wijewickrema, S., Bailey, J., Kennedy, G., O’Leary, S.: Automated segmentation of surgical motion for performance analysis and Feedback. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015 Part I. LNCS, vol. 9349, pp. 379–386. Springer, Cham (2015). doi:10.1007/978-3-319-24553-9_47 CrossRefGoogle Scholar
  17. 17.
    Kowalewski, T.M., White, L.W., Lendvay, T.S., Jiang, I.S., Sweet, R., Wright, A., Hannaford, B., Sinanan, M.N.: Beyond task time: automated measurement augments fundamentals of laparoscopic skills methodology. J. Surg. Res. 192(2), 329–338 (2014)CrossRefGoogle Scholar
  18. 18.
    Reiley, C.E., Lin, H.C., Varadarajan, B., Vagvolgyi, B., Khudanpur, S., Yuh, D., Hager, G.: Automatic recognition of surgical motions using statistical modeling for capturing variability. Stud. Health Technol. Inform. 132, 396 (2008)Google Scholar
  19. 19.
    Tao, L., Elhamifar, E., Khudanpur, S., Hager, G.D., Vidal, R.: Sparse hidden Markov models for surgical gesture classification and skill evaluation. In: Abolmaesumi, P., Joskowicz, L., Navab, N., Jannin, P. (eds.) IPCAI 2012. LNCS, vol. 7330, pp. 167–177. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30618-1_17 CrossRefGoogle Scholar
  20. 20.
    Tao, L., Zappella, L., Hager, G.D., Vidal, R.: Surgical gesture segmentation and recognition. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 339–346. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40760-4_43 CrossRefGoogle Scholar
  21. 21.
    Höppner, F.: Time series abstraction methods-a survey. In: GI Jahrestagung, pp. 777–786 (2002)Google Scholar
  22. 22.
    Patel, P., Keogh, E., Lin, J., Lonardi, S.: Mining motifs in massive time series databases. In: IEEE International Conference on Data Mining, pp. 370–377 (2002)Google Scholar
  23. 23.
    Moskovitch, R., Shahar, Y.: Classification-driven temporal discretization of multivariate time series. Data Min. Knowl. Disc. 29(4), 871–913 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to Information Retrieval, vol. 1. Cambridge University Press, Cambridge (2008)CrossRefMATHGoogle Scholar
  25. 25.
    Ahmidi, N., Tao, L., Sefati, S., Gao, Y., Lea, C., Bejar, B., Zappella, L., Khudanpur, S., Vidal, R., Hager, G.D.: A dataset and benchmarks for segmentation and recognition of gestures in robotic surgery. IEEE Trans. Biomed. Eng. (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Germain Forestier
    • 1
    • 2
  • François Petitjean
    • 2
  • Pavel Senin
    • 3
  • Fabien Despinoy
    • 4
  • Pierre Jannin
    • 4
  1. 1.MIPSUniversity of Haute-AlsaceMulhouseFrance
  2. 2.Faculty of Information TechnologyMonash UniversityMelbourneAustralia
  3. 3.Los Alamos National LaboratoryLos AlamosUSA
  4. 4.INSERM MediCIS, Unit U1099 LTSIRennesFrance

Personalised recommendations