Advertisement

Apoptosis, Autophagy, and Unfolded Protein Response and Cerebellar Development

  • Mohammad Amin Moosavi
  • Marveh Rahmati
  • Niloufar Ashtari
  • Javad Alizadeh
  • Mohammad Hashemi
  • Seyedeh Zahra Bathaei
  • Saeid GhavamiEmail author
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Development is an evolutionary process that is tightly regulated in mammalian species. Several different cascades are involved in different stages of development. Among these mechanisms, apoptosis, autophagy, and unfolded protein response play critical roles in regulation of development by affecting the cell fate. All of these pathways are involved in regulation of cell number via determining the life and death cycles of the cells. In this chapter, we first explain the brief mechanisms that are involved in regulation of apoptosis, autophagy, and unfolded protein response, and later, we briefly describe how these mechanisms play roles in general development. We then discuss the importance of these pathways in regulation of cerebellar development.

Keywords

Apoptosis Autophagy Endoplasmic reticulum stress Unfolded protein response 

Abbreviations

AD

Alzheimer’s disease

ALS

Amyotrophic lateral sclerosis

Apaf-1

Apoptotic protease activating factor 1

ATF4

Activating transcription factor 4

ATF6

Activating transcription factor 6

ATGs

Autophagy-related proteins

Bcl-2

B-cell lymphoma protein 2

BiP

Immunoglobulin heavy chain binding protein

bZIP

Basic leucine zipper protein

CAD

Caspase-activated DNase

CARD

Caspase recruitment domains

Caspases

Cysteinyl aspartate proteases

CERKL

Ceramide kinase-like

CGS

Cerebellar granule cells

CHOP

C/EBP homologous protein

CMA

Chaperone-mediated autophagy

Cyt c

Cytochrome c

DED

Death effector domain

DIABLO

Direct IAP binding protein with low pI

DISC

Death-inducing signaling complex

DTT

Dithiothreitol

EGL

External granule layer

eif2α

Eukaryotic initiation factor 2 alpha

ER

Endoplasmic reticulum

ERAD

ER-associated protein degradation

ERSE

ER stress response element

FADD

Fas-associated death domain

GCPs

Granule cell precursors

GL

Granule layer

GNPs

Granule neuron precursors

GRPs

Glucose-regulated proteins

HA

Hemagglutinin

HD

Huntington’s disease

HSPs

Heat shock proteins

HSR

Heat shock response

HtrA2

High temperature requirement protein A

IGL

Internal granule layer

IRE1

Inositol-requiring transmembrane kinase/endoribonuclease 1

LC3

Microtubule-associated protein light chain 3

MPT

Mitochondrial permeability transition

mTOR

Mammalian target of rapamycin

NOND

Naturally occurring neuronal death

pcd

Purkinje cell degeneration

PCD

Programmed cell death

PD

Parkinson’s disease

PDI

Protein disulfide isomerase

PE

Phosphatidylethanolamine

PERK

Double-stranded RNA (PKR)-activated protein kinase-like eukaryotic initiation factor 2α kinase

PI3K

Phosphatidylinositol 3-kinase

PMDs

Protein misfolding disorders

PMT

Permeability membrane transition

PrDs

Prion-related diseases

ROS

Reactive oxygen species

Smac

Second mitochondria-derived activator of caspase

TGF

Transforming growth factors

TRADD

TNF receptor-associated death domain

ULK

Unc-51-like kinase

VZ

Ventricular zone

XBP1

X-box binding protein-1

XBP1s

Spliced XBP1

XBP1U

Unspliced XBP1

Notes

Acknowledgment

JA was supported by Research Manitoba studentship. NA was supported by NSERC held by Dr. Hassan Marzban. SG was supported by Health Science Centre Foundation General Operating Grant.

References

  1. 1.
    Aburto MR, Hurlé JM, Varela-Nieto I, Magariños M. Autophagy during vertebrate development. Cell. 2012;1:428–48.CrossRefGoogle Scholar
  2. 2.
    Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell. 2002;9:423–32.PubMedCrossRefGoogle Scholar
  3. 3.
    Altman J. Postnatal development of the cerebellar cortex in the rat. III. Maturation of the components of the granular layer. J Comp Neurol. 1972;145:465–513.PubMedCrossRefGoogle Scholar
  4. 4.
    Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J. 2000;345:271–8.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Anttonen AK, Mahjneh I, Hamalainen RH, Lagier-Tourenne C, Kopra O, Waris L, Anttonen M, Joensuu T, Kalimo H, Paetau A, Tranebjaerg L, Chaigne D, Koenig M, Eeg-Olofsson O, Udd B, Somer M, Somer H, Lehesjoki AE. The gene disrupted in Marinesco-Sjogren syndrome encodes SIL1, an HSPA5 cochaperone. Nat Genet. 2005;37:1309–11.PubMedCrossRefGoogle Scholar
  6. 6.
    Arnoult D, Parone P, Martinou J-C, Antonsson B, Estaquier J, Ameisen JC. Mitochondrial release of apoptosis-inducing factor occurs downstream of cytochrome c release in response to several proapoptotic stimuli. J Cell Biol. 2002;159:923–9.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Austin RC. The unfolded protein response in health and disease. Antioxid Redox Signal. 2009;11:2279–87.PubMedCrossRefGoogle Scholar
  8. 8.
    Baehrecke E. Autophagic programmed cell death in Drosophila. Cell Death Differ. 2003;10:940–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science. 2008;319:916–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Brunsing R, Omori SA, Weber F, Bicknell A, Friend L, Rickert R, Niwa M. B- and T-cell development both involve activity of the unfolded protein response pathway. J Biol Chem. 2008;283:17954–61.PubMedCrossRefGoogle Scholar
  11. 11.
    Carneiro BA, Kaplan JB, Altman JK, Giles FJ, Platanias LC. Targeting mTOR signaling pathways and related negative feedback loops for the treatment of acute myeloid leukemia. Cancer Biol Ther. 2015;16:648–56.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Cecconi F, Levine B. The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell. 2008;15:344–57.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Chaabane W, User SD, El-Gazzah M, Jaksik R, Sajjadi E, Rzeszowska-Wolny J, Łos MJ. Autophagy, apoptosis, mitoptosis and necrosis: interdependence between those pathways and effects on cancer. Arch Immunol Ther Exp. 2013;61:43–58.CrossRefGoogle Scholar
  14. 14.
    Chakrabarti L, Eng J, Ivanov N, Garden GA, La Spada AR. Autophagy activation and enhanced mitophagy characterize the Purkinje cells of pcd mice prior to neuronal death. Mol Brain. 2009;2:24.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Cheng XS, Li MS, Du J, Jiang QY, Wang L, Yan SY, Yu DM, Deng JB. Neuronal apoptosis in the developing cerebellum. Anat Histol Embryol. 2011;40:21–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Cho YM, Jang Y-S, Jang Y-M, Chung S-M, Kim H-S, Lee J-H, Jeong S-W, Kim I-K, Kim JJ, Kim K-S. Induction of unfolded protein response during neuronal induction of rat bone marrow stromal cells and mouse embryonic stem cells. Exp Mol Med. 2009;41:440–52.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol. 2001;3:339–45.PubMedCrossRefGoogle Scholar
  18. 18.
    Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–56.PubMedCrossRefGoogle Scholar
  19. 19.
    D’Mello SR, Galli C, Ciotti T, Calissano P. Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc Natl Acad Sci. 1993;90:10989–93.PubMedCrossRefGoogle Scholar
  20. 20.
    De Luca A, Weller M, Fontana A. TGF-beta-induced apoptosis of cerebellar granule neurons is prevented by depolarization. J Neurosci. 1996;16:4174–85.PubMedCrossRefGoogle Scholar
  21. 21.
    Di Bartolomeo S, Nazio F, Cecconi F. The role of autophagy during development in higher eukaryotes. Traffic. 2010;11:1280–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Ding W-X, Ni H-M, Gao W, Hou Y-F, Melan MA, Chen X, Stolz DB, Shao Z-M, Yin X-M. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem. 2007;282:4702–10.PubMedCrossRefGoogle Scholar
  23. 23.
    Dong H, Czaja MJ. Regulation of lipid droplets by autophagy. Trends Endocrinol Metab. 2011;22:234–40.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell. 1986;44:817–29.PubMedCrossRefGoogle Scholar
  25. 25.
    Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Fadeel B, Orrenius S, Zhivotovsky B. Apoptosis in human disease: a new skin for the old ceremony? Biochem Biophys Res Commun. 1999;266:699–717.PubMedCrossRefGoogle Scholar
  27. 27.
    Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P. Ambra1 regulates autophagy and development of the nervous system. Nature. 2007;447:1121–5.PubMedGoogle Scholar
  28. 28.
    Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73:1907–16.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Firtina Z, Duncan MK. Unfolded Protein Response (UPR) is activated during normal lens development. Gene Expr Patterns. 2011;11:135–43.PubMedCrossRefGoogle Scholar
  30. 30.
    Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2011;147:742–58.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Galli C, Meucci O, Scorziello A, Werge TM, Calissano P, Schettini G. Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis. J Neurosci. 1995;15:1172–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Gass JN, Jiang HY, Wek RC, Brewer JW. The unfolded protein response of B-lymphocytes: PERK-independent development of antibody-secreting cells. Mol Immunol. 2008;45:1035–43.PubMedCrossRefGoogle Scholar
  33. 33.
    Ghavami S, Gupta S, Ambrose E, Hnatowich M, Freed D, Dixon I. Autophagy and heart disease: implications for cardiac ischemia-reperfusion damage. Curr Mol Med. 2014;14:616–29.PubMedCrossRefGoogle Scholar
  34. 34.
    Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W, Eshraghi M, Bus CJ, Kadkhoda K, Wiechec E, Halayko AJ. Apoptosis and cancer: mutations within caspase genes. J Med Genet. 2009;46:497–510.PubMedCrossRefGoogle Scholar
  35. 35.
    Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W, Moghadam AR, Kashani HH. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol. 2014;112:24–49.PubMedCrossRefGoogle Scholar
  36. 36.
    Godin JD, Creppe C, Laguesse S, Nguyen L. Emerging roles for the unfolded protein response in the developing nervous system. Trends Neurosci. 2016;39:394–404.PubMedCrossRefGoogle Scholar
  37. 37.
    Haanen C, Vermes I. Apoptosis: programmed cell death in fetal development. Eur J Obstet Gynecol Reprod Biol. 1996;64:129–33.PubMedCrossRefGoogle Scholar
  38. 38.
    Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 2000;6:1099–108.PubMedCrossRefGoogle Scholar
  39. 39.
    Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999;397:271–4.PubMedCrossRefGoogle Scholar
  40. 40.
    Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11:619–33.PubMedCrossRefGoogle Scholar
  41. 41.
    Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 1999;10:3787–99.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Hetz C, Chevet E, Harding HP. Targeting the unfolded protein response in disease. Nat Rev Drug Discov. 2013;12:703–19.PubMedCrossRefGoogle Scholar
  43. 43.
    Hetz C, Mollereau B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci. 2014;15:233–49.PubMedCrossRefGoogle Scholar
  44. 44.
    Higashi T, Nishi S, Nakai A, Nagata K. Regulatory mechanism of stress response in mammalian nervous system during cerebral ischaemia or after heat shock. Neuropathol Appl Neurobiol. 1995;21:480–3.PubMedCrossRefGoogle Scholar
  45. 45.
    Higashi T, Takechi H, Uemura Y, Kikuchi H, Nagata K. Differential induction of mRNA species encoding several classes of stress proteins following focal cerebral ischemia in rats. Brain Res. 1994;650:239–48.PubMedCrossRefGoogle Scholar
  46. 46.
    Hoozemans JJ, Stieler J, Van Haastert ES, Veerhuis R, Rozemuller AJ, Baas F, Eikelenboom P, Arendt T, Scheper W. The unfolded protein response affects neuronal cell cycle protein expression: implications for Alzheimer’s disease pathogenesis. Exp Gerontol. 2006;41:380–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Hosokawa N, Hara Y, Mizushima N. Generation of cell lines with tetracycline-regulated autophagy and a role for autophagy in controlling cell size. FEBS Lett. 2006;580:2623–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Hossmann K-A. Disturbances of cerebral protein synthesis and ischemic cell death. Prog Brain Res. 1993;96:161–77.PubMedCrossRefGoogle Scholar
  49. 49.
    Imaizumi K, Miyoshi K, Katayama T, Yoneda T, Taniguchi M, Kudo T, Tohyama M. The unfolded protein response and Alzheimer’s disease. Biochim Biophys Acta. 2001;1536:85–96.PubMedCrossRefGoogle Scholar
  50. 50.
    Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzunov DP, Smalheiser NR, Davis JM, Pandey GN. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci. 1998;95:15718–23.PubMedCrossRefGoogle Scholar
  51. 51.
    Jayakiran M. Apoptosis-biochemistry: a mini review. J Clin Exp Pathol. 2015;5:1–4.Google Scholar
  52. 52.
    Jeffrey M, Scott J, Williams A, Fraser H. Ultrastructural features of spongiform encephalopathy transmitted to mice from three species of bovidae. Acta Neuropathol. 1992;84:559–69.PubMedCrossRefGoogle Scholar
  53. 53.
    Jia Y, Jucius TJ, Cook SA, Ackerman SL. Loss of Clcc1 results in ER stress, misfolded protein accumulation, and neurodegeneration. J Neurosci. 2015;35:3001–9.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Jin HO, Seo SK, Woo SH, Kim ES, Lee HC, Yoo DH, An S, Choe TB, Lee SJ, Hong SI, Rhee CH, Kim JI, Park IC. Activating transcription factor 4 and CCAAT/enhancer-binding protein-beta negatively regulate the mammalian target of rapamycin via Redd1 expression in response to oxidative and endoplasmic reticulum stress. Free Radic Biol Med. 2009;46:1158–67.PubMedCrossRefGoogle Scholar
  55. 55.
    Jovaisaite V, Mouchiroud L, Auwerx J. The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol. 2014;217:137–43.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci. 2011;4:51.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kerr J. A histochemical study of hypertrophy and ischaemic injury of rat liver with special reference to changes in lysosomes. J Pathol Bacteriol. 1965;90:419–35.PubMedCrossRefGoogle Scholar
  58. 58.
    Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kitao Y, Hashimoto K, Matsuyama T, Iso H, Tamatani T, Hori O, Stern DM, Kano M, Ozawa K, Ogawa S. ORP150/HSP12A regulates Purkinje cell survival: a role for endoplasmic reticulum stress in cerebellar development. J Neurosci. 2004;24:1486–96.PubMedCrossRefGoogle Scholar
  60. 60.
    Klionsky DJ. The molecular machinery of autophagy: unanswered questions. J Cell Sci. 2005;118:7–18.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Komatsu M, Waguri S, Koike M, Sou Y-S, Ueno T, Hara T, Mizushima N, Iwata J-I, Ezaki J, Murata S. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007;131:1149–63.PubMedCrossRefGoogle Scholar
  62. 62.
    Komatsu M, Wang QJ, Holstein GR, Friedrich VL, Iwata J-I, Kominami E, Chait BT, Tanaka K, Yue Z. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci. 2007;104:14489–94.PubMedCrossRefGoogle Scholar
  63. 63.
    Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa S, Kaufman R, Kominami E, Momoi T. ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 2007;14:230–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature. 1988;332:462–4.PubMedCrossRefGoogle Scholar
  65. 65.
    Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature. 2004;432:1032–6.CrossRefGoogle Scholar
  66. 66.
    Laguesse S, Creppe C, Nedialkova DD, Prévot P-P, Borgs L, Huysseune S, Franco B, Duysens G, Krusy N, Lee G. A dynamic unfolded protein response contributes to the control of cortical neurogenesis. Dev Cell. 2015;35:553–67.PubMedCrossRefGoogle Scholar
  67. 67.
    Lee AS. Coordinated regulation of a set of genes by glucose and calcium ionophores in mammalian cells. Trends Biochem Sci (TIBS). 1987;12:20–3.CrossRefGoogle Scholar
  68. 68.
    Lee AS. Mammalian stress response: induction of the glucose-regulated protein family. Curr Opin Cell Biol. 1992;4:267–73.PubMedCrossRefGoogle Scholar
  69. 69.
    Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM, Cook SA, Davisson MT, Sundberg JP, Schimmel P, Ackerman SL. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature. 2006;443:50–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T, Yoshida H, Mori K, Kaufman RJ. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 2002;16:452–66.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Leist M, Jäättelä M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol. 2001;2:589–98.PubMedCrossRefGoogle Scholar
  72. 72.
    Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2002;2:183–92.PubMedCrossRefGoogle Scholar
  73. 73.
    Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6:463–77.PubMedCrossRefGoogle Scholar
  74. 74.
    Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–42.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8:627–44.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Lockshin RA, Zakeri Z. Programmed cell death and apoptosis: origins of the theory. Nat Rev Mol Cell Biol. 2001;2:545–50.PubMedCrossRefGoogle Scholar
  77. 77.
    Loeffler M, Kroemer G. The mitochondrion in cell death control: certainties and incognita. Exp Cell Res. 2000;256:19–26.PubMedCrossRefGoogle Scholar
  78. 78.
    Lossi L, Gambino G. Apoptosis of the cerebellar neurons. Histol Histopathol. 2008; 23(3):367–80.Google Scholar
  79. 79.
    Ma Y, Brewer JW, Diehl JA, Hendershot LM. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol. 2002;318:1351–65.PubMedCrossRefGoogle Scholar
  80. 80.
    Mandal NA, Tran JT, Saadi A, Rahman AK, Huynh TP, Klein WH, Cho JH. Expression and localization of CERKL in the mammalian retina, its response to light-stress, and relationship with NeuroD1 gene. Exp Eye Res. 2013;106:24–33.PubMedCrossRefGoogle Scholar
  81. 81.
    Marsden VS, O’Connor L, O’Reilly LA, Silke J, Metcalf D, Ekert PG, Huang DC, Cecconi F, Kuida K, Tomaselli KJ. Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature. 2002;419:634–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Marzban H, Del Bigio MR, Alizadeh J, Ghavami S, Zachariah RM, Rastegar M. Cellular commitment in the developing cerebellum. Front Cell Neurosci. 2015;8:450.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Massey AC, Zhang C, Cuervo AM. Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol. 2006;73:205–35.PubMedCrossRefGoogle Scholar
  84. 84.
    Maycotte P, Guemez-Gamboa A, Moran J. Apoptosis and autophagy in rat cerebellar granule neuron death: role of reactive oxygen species. J Neurosci Res. 2010;88:73–85.PubMedCrossRefGoogle Scholar
  85. 85.
    Meier P, Finch A, Evan G. Apoptosis in development. Nature. 2000;407:796–801.PubMedCrossRefGoogle Scholar
  86. 86.
    Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol. 2010;12:823–30.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y. A protein conjugation system essential for autophagy. Nature. 1998;395:395–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Mori K. Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem. 2009;146:743–50.PubMedCrossRefGoogle Scholar
  89. 89.
    Mortensen M, Simon AK. Nonredundant role of Atg7 in mitochondrial clearance during erythroid development. Autophagy. 2010;6:423–5.PubMedCrossRefGoogle Scholar
  90. 90.
    Munro S, Pelham HR. An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell. 1986;46:291–300.PubMedCrossRefGoogle Scholar
  91. 91.
    Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009;10:458–67.PubMedCrossRefGoogle Scholar
  92. 92.
    Naughton MC, Mcmahon JM, Fitzgerald U. Differential activation of ER stress pathways in myelinating cerebellar tracts. Int J Dev Neurosci. 2015;47:347–60.PubMedCrossRefGoogle Scholar
  93. 93.
    Partaledis JA, Berlin V. The FKB2 gene of Saccharomyces cerevisiae, encoding the immunosuppressant-binding protein FKBP-13, is regulated in response to accumulation of unfolded proteins in the endoplasmic reticulum. Proc Natl Acad Sci U S A. 1993;90:5450–4.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Pavlovsky AA, Boehning D, Li D, Zhang Y, Fan X, Green TA. Psychological stress, cocaine and natural reward each induce endoplasmic reticulum stress genes in rat brain. Neuroscience. 2013;246:160–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Puthalakath H, Strasser A. Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ. 2002;9:505–12.PubMedCrossRefGoogle Scholar
  96. 96.
    Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD. Programmed cell death and the control of cell survival: lessons from the nervous system. Science. 1993;262:695–700.PubMedCrossRefGoogle Scholar
  97. 97.
    Rathmell JC, Thompson CB. Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell. 2002;109:S97–S107.PubMedCrossRefGoogle Scholar
  98. 98.
    Samali A, Zhivotovsky B, Jones D, Nagata S, Orrenius S. Apoptosis: cell death defined by caspase activation. Cell Death Differ. 1999;6:495.PubMedCrossRefGoogle Scholar
  99. 99.
    Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307:1098–101.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998;17:1675–87.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Scheper W, Nijholt DA, Hoozemans JJ. The unfolded protein response and proteostasis in Alzheimer disease: preferential activation of autophagy by endoplasmic reticulum stress. Autophagy. 2011;7:910–1.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Schulz JB, Weller M, Klockgether T. Potassium deprivation-induced apoptosis of cerebellar granule neurons: a sequential requirement for new mRNA and protein synthesis, ICE-like protease activity, and reactive oxygen species. J Neurosci. 1996;16:4696–706.PubMedCrossRefGoogle Scholar
  103. 103.
    Senderek J, Krieger M, Stendel C, Bergmann C, Moser M, Breitbach-Faller N, Rudnik-Schoneborn S, Blaschek A, Wolf NI, Harting I, North K, Smith J, Muntoni F, Brockington M, Quijano-Roy S, Renault F, Herrmann R, Hendershot LM, Schroder JM, Lochmuller H, Topaloglu H, Voit T, Weis J, Ebinger F, Zerres K. Mutations in SIL1 cause Marinesco-Sjogren syndrome, a cerebellar ataxia with cataract and myopathy. Nat Genet. 2005;37:1312–4.PubMedCrossRefGoogle Scholar
  104. 104.
    Sone M, Zeng X, Larese J, Ryoo HD. A modified UPR stress sensing system reveals a novel tissue distribution of IRE1/XBP1 activity during normal Drosophila development. Cell Stress Chaperones. 2013;18:307–19.PubMedCrossRefGoogle Scholar
  105. 105.
    Sood R, Porter AC, Ma K, Quilliam LA, Wek RC. Pancreatic eukaryotic initiation factor-2alpha kinase (PEK) homologues in humans, Drosophila melanogaster and Caenorhabditis elegans that mediate translational control in response to endoplasmic reticulum stress. Biochem J. 2000;346(Pt 2):281–93.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci. 2003;4:49–60.PubMedCrossRefGoogle Scholar
  107. 107.
    Takahashi R, Deveraux Q, Tamm I, Welsh K, Assa-Munt N, Salvesen GS, Reed JC. A single BIR domain of XIAP sufficient for inhibiting caspases. J Biol Chem. 1998;273:7787–90.PubMedCrossRefGoogle Scholar
  108. 108.
    Thuerauf DJ, Marcinko M, Belmont PJ, Glembotski CC. Effects of the isoform-specific characteristics of ATF6 alpha and ATF6 beta on endoplasmic reticulum stress response gene expression and cell viability. J Biol Chem. 2007;282:22865–78.PubMedCrossRefGoogle Scholar
  109. 109.
    Tomoda T, Bhatt RS, Kuroyanagi H, Shirasawa T, Hatten ME. A mouse serine/threonine kinase homologous to C. elegans UNC51 functions in parallel fiber formation of cerebellar granule neurons. Neuron. 1999;24:833–46.PubMedCrossRefGoogle Scholar
  110. 110.
    Wang H, Wang X, Ke Z-J, Comer AL, Xu M, Frank JA, Zhang Z, Shi X, Luo J. Tunicamycin-induced unfolded protein response in the developing mouse brain. Toxicol Appl Pharmacol. 2015;283:157–67.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Wang M, Wey S, Zhang Y, Ye R, Lee AS. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal. 2009;11:2307–16.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. J Cell Biol. 2012;197:857–67.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Welch WJ. The mammalian heat shock (or stress) response: a cellular defense mechanism. Adv Exp Med Biol. 1987;225:287–304.PubMedCrossRefGoogle Scholar
  114. 114.
    Welch WJ. Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev. 1992;72:1063–81.PubMedCrossRefGoogle Scholar
  115. 115.
    Welch WJ, Kang HS, Beckmann RP, Mizzen LA. Response of mammalian cells to metabolic stress; changes in cell physiology and structure/function of stress proteins. Curr Top Microbiol Immunol. 1991;167:31–55.PubMedGoogle Scholar
  116. 116.
    White E. Death-defying acts: a meeting review on apoptosis. Genes Dev. 1993;7:2277–84.PubMedCrossRefGoogle Scholar
  117. 117.
    White EJ, Martin V, Liu J-L, Klein SR, Piya S, Gomez-Manzano C, Fueyo J, Jiang H. Autophagy regulation in cancer development and therapy. Am J Cancer Res. 2011;1:362.PubMedGoogle Scholar
  118. 118.
    Wood KA, Dipasquale B, Youle RJ. In situ labeling of granule cells for apoptosis-associated DNA fragmentation reveals different mechanisms of cell loss in developing cerebellum. Neuron. 1993;11:621–32.PubMedCrossRefGoogle Scholar
  119. 119.
    Wood KA, Youle RJ. The role of free radicals and p53 in neuron apoptosis in vivo. J Neurosci. 1995;15:5851–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Wooden SK, Li LJ, Navarro D, Qadri I, Pereira L, Lee AS. Transactivation of the grp78 promoter by malfolded proteins, glycosylation block, and calcium ionophore is mediated through a proximal region containing a CCAAT motif which interacts with CTF/NF-I. Mol Cell Biol. 1991;11:5612–23.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol. 2007;9:1102–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Yan G-M, Ni B, Weller M, Wood KA, Paul SM. Depolarization or glutamate receptor activation blocks apoptotic cell death of cultured cerebellar granule neurons. Brain Res. 1994;656:43–51.PubMedCrossRefGoogle Scholar
  123. 123.
    Yang J, Zhou S, Gu J, Guo M, Xia H, Liu Y. UPR activation and the down-regulation of alpha-crystallin in human high myopia-related cataract lens epithelium. PLoS One. 2015;10:e0137582.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol. 2010;12:814–22.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS, Goldstein JL. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 2000;6:1355–64.PubMedCrossRefGoogle Scholar
  126. 126.
    Yoshida H, Haze K, Yanagi H, Yura T, Mori K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem. 1998;273:33741–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001;107:881–91.PubMedCrossRefGoogle Scholar
  128. 128.
    Zhao L, Longo-Guess C, Harris BS, Lee J-W, Ackerman SL. Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat Genet. 2005;37:974–9.PubMedCrossRefGoogle Scholar
  129. 129.
    Zhao L, Rosales C, Seburn K, Ron D, Ackerman SL. Alteration of the unfolded protein response modifies neurodegeneration in a mouse model of Marinesco–Sjögren syndrome. Hum Mol Genet. 2010;19:25–35.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mohammad Amin Moosavi
    • 1
  • Marveh Rahmati
    • 2
  • Niloufar Ashtari
    • 3
  • Javad Alizadeh
    • 3
  • Mohammad Hashemi
    • 4
  • Seyedeh Zahra Bathaei
    • 5
  • Saeid Ghavami
    • 3
    • 6
    Email author
  1. 1.Department of Molecular Medicine, Institute of Medical BiotechnologyNational Institute for Genetic Engineering and BiotechnologyTehranIran
  2. 2.Cancer Biology Research Center, Cancer Institute of IranTehran University of Medical SciencesTehranIran
  3. 3.Department of Human Anatomy and Cell ScienceRady College of Medicine, Max Rady College of Medicine, University of ManitobaWinnipegCanada
  4. 4.Department of Clinical Biochemistry, School of MedicineZahedan University of Medical SciencesZahedanIran
  5. 5.Department of Clinical Biochemistry, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
  6. 6.Health Policy Research CentreShiraz University of Medical SciencesShirazIran

Personalised recommendations