Cellular and Genetic Programs Underlying Cerebellum Development

  • Alexandra L. JoynerEmail author
  • Ryan Willett
  • Andrew Lawton
Part of the Contemporary Clinical Neuroscience book series (CCNE)


The cerebellum is a late developing structure compared to the rest of the central nervous system (CNS) and houses more cells than the entire rest of the brain in a complex set of folds. To accommodate production of the large number of cells, the cerebellum has not only a ventricular progenitor zone that produces all the glia and inhibitory neurons but also a unique progenitor zone, the rhombic lip, dedicated to excitatory neuron production. In this chapter we discuss how the inhibitory Purkinje cells, which integrate the incoming information and moderate the output neurons of the cerebellar nuclei, play a key role during development in ensuring appropriate production of the other neurons/astrocytes of the cerebellar cortex. Key transcription factors that regulate development of the two progenitor populations and the lineage relationships of the neurons and astrocytes produced by each are described, followed by a discussion of cerebellar foliation.


Ventricular zone Rhombic lip Purkinje cells Granule cells Interneurons Bergmann glia Astrocytes Cerebellar nuclei Neural stem cells Foliation 



We thank members of the Joyner lab, past and present, for stimulating discussions about cerebellum development. Our cerebellar research is supported by grants to ALJ from the NIH (R37MH085726, R01NS092096, and R01CA192176) and by NIH Kirschstein National Research Service Awards to RW (F32NS080422) and AL (F32NS086163) and a National Cancer Institute Cancer Center Support Grant No 2 (P30 CA008748-48).


  1. 1.
    Altman J, Bayer SA. Development of the cerebellar system in relation to its evolution, structure, and functions. Boca Raton: CRC Press; 1997.Google Scholar
  2. 2.
    Rakic P, Sidman RL. Histogenesis of cortical layers in human cerebellum, particularly the lamina dissecans. J Comp Neurol. 1970;139(4):473–500. PubMed PMID: 4195699. Epub 1970/08/01. eng.PubMedCrossRefGoogle Scholar
  3. 3.
    Dobbing J, Sands J. Quantitative growth and development of human brain. Arch Dis Child. 1973;48(10):757–67. PubMed PMID: 4796010. Pubmed Central PMCID: PMC1648530. Epub 1973/10/01. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Szulc KU, Lerch JP, Nieman BJ, Bartelle BB, Friedel M, Suero-Abreu GA, et al. 4D MEMRI atlas of neonatal FVB/N mouse brain development. NeuroImage. 2015;118:49–62. PubMed PMID: 26037053. Epub 2015/06/04. Eng.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Szulc KU, Nieman BJ, Houston EJ, Bartelle BB, Lerch JP, Joyner AL, et al. MRI analysis of cerebellar and vestibular developmental phenotypes in Gbx2 conditional knockout mice. Magn Reson Med: Off J Soc Magn Reson Med/Soc Magn Reson Med. 2013;70(6):1707–17. PubMed PMID: 23400959. Pubmed Central PMCID: PMC3657598. Epub 2013/02/13. eng.CrossRefGoogle Scholar
  6. 6.
    Tam EW, Miller SP, Studholme C, Chau V, Glidden D, Poskitt KJ, et al. Differential effects of intraventricular hemorrhage and white matter injury on preterm cerebellar growth. J Pediatr. 2011;158(3):366–71. PubMed PMID: 20961562. Pubmed Central PMCID: PMC3025266. Epub 2010/10/22. eng.PubMedCrossRefGoogle Scholar
  7. 7.
    Scott JA, Hamzelou KS, Rajagopalan V, Habas PA, Kim K, Barkovich AJ, et al. 3D morphometric analysis of human fetal cerebellar development. Cerebellum. 2012;11(3):761–70. PubMed PMID: 22198870. Pubmed Central PMCID: PMC3389138. Epub 2011/12/27. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Tam EW. Potential mechanisms of cerebellar hypoplasia in prematurity. Neuroradiology. 2013;55(Suppl 2):41–6. PubMed PMID: 23842990. Epub 2013/07/12. eng.PubMedCrossRefGoogle Scholar
  9. 9.
    Wang SS, Kloth AD, Badura A. The cerebellum, sensitive periods, and autism. Neuron. 2014;83(3):518–32. PubMed PMID: 25102558. Pubmed Central PMCID: PMC4135479. Epub 2014/08/08. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, et al. Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron. 2005;47(2):201–13. PubMed PMID: 16039563. Epub 2005/07/26. eng.PubMedCrossRefGoogle Scholar
  11. 11.
    Fleming JT, He W, Hao C, Ketova T, Pan FC, Wright CC, et al. The Purkinje neuron acts as a central regulator of spatially and functionally distinct cerebellar precursors. Dev Cell. 2013;27(3):278–92. PubMed PMID: 24229643. Pubmed Central PMCID: PMC3860749. Epub 2013/11/16. eng.PubMedCrossRefGoogle Scholar
  12. 12.
    Sudarov A, Turnbull RK, Kim EJ, Lebel-Potter M, Guillemot F, Joyner AL. Ascl1 genetics reveals insights into cerebellum local circuit assembly. J Neurosci. 2011;31(30):11055–69. PubMed PMID: 21795554. Pubmed Central PMCID: 3153985. Epub 2011/07/29. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Milosevic A, Goldman JE. Potential of progenitors from postnatal cerebellar neuroepithelium and white matter: lineage specified vs. multipotent fate. Mol Cell Neurosci. 2004;26(2):342–53. PubMed PMID: 15207858. Epub 2004/06/23. eng.PubMedCrossRefGoogle Scholar
  14. 14.
    Leto K, Bartolini A, Yanagawa Y, Obata K, Magrassi L, Schilling K, et al. Laminar fate and phenotype specification of cerebellar GABAergic interneurons. J Neurosci. 2009;29(21):7079–91. PubMed PMID: 19474334. Epub 2009/05/29. eng.PubMedCrossRefGoogle Scholar
  15. 15.
    Wingate RJ, Hatten ME. The role of the rhombic lip in avian cerebellum development. Development. 1999;126(20):4395–404. PubMed PMID: 10498676. Epub 1999/09/28. eng.PubMedGoogle Scholar
  16. 16.
    Machold R, Fishell G. Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron. 2005;48(1):17–24. PubMed PMID: 16202705. Epub 2005/10/06. eng.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang VY, Rose MF, Zoghbi HY. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron. 2005;48(1):31–43. PubMed PMID: 16202707. Epub 2005/10/06. eng.PubMedCrossRefGoogle Scholar
  18. 18.
    Hashimoto R, Hori K, Owa T, Miyashita S, Dewa K, Masuyama N, et al. Origins of oligodendrocytes in the cerebellum, whose development is controlled by the transcription factor, Sox9. Mech Dev. 2016;140:25–40. PubMed PMID: 26940020. Epub 2016/03/05. eng.PubMedCrossRefGoogle Scholar
  19. 19.
    Mecklenburg N, Garcia-Lopez R, Puelles E, Sotelo C, Martinez S. Cerebellar oligodendroglial cells have a mesencephalic origin. Glia. 2011;59(12):1946–57. PubMed PMID: 21901755. Epub 2011/09/09. eng.PubMedCrossRefGoogle Scholar
  20. 20.
    Grimaldi P, Parras C, Guillemot F, Rossi F, Wassef M. Origins and control of the differentiation of inhibitory interneurons and glia in the cerebellum. Dev Biol. 2009;328(2):422–33. PubMed PMID: 19217896. Epub 2009/02/17. eng.PubMedCrossRefGoogle Scholar
  21. 21.
    Legue E, Joyner AL. Genetic fate mapping using site-specific recombinases. Methods Enzymol. 2010;477:153–81. PubMed PMID: 20699142. Epub 2010/08/12. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Joyner AL, Zervas M. Genetic inducible fate mapping in mouse: establishing genetic lineages and defining genetic neuroanatomy in the nervous system. Dev Dyn. 2006;235(9):2376–85. PubMed PMID: 16871622. Epub 2006/07/28. eng.PubMedCrossRefGoogle Scholar
  23. 23.
    Zervas M, Millet S, Ahn S, Joyner AL. Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron. 2004;43(3):345–57. PubMed PMID: 15294143. Epub 2004/08/06. eng.PubMedCrossRefGoogle Scholar
  24. 24.
    Alvarez Otero R, Sotelo C, Alvarado-Mallart RM. Chick/quail chimeras with partial cerebellar grafts: an analysis of the origin and migration of cerebellar cells. J Comp Neurol. 1993;333(4):597–615.PubMedCrossRefGoogle Scholar
  25. 25.
    Millet S, Bloch-Gallego E, Simeone A, Alvarado-Mallart R-M. The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development. 1996;122:3785–97.PubMedGoogle Scholar
  26. 26.
    Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL. Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron. 2005;45(1):27–40. PubMed PMID: 15629700. Pubmed Central PMCID: 15629700. Epub 2005/01/05. eng.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Zervas M, Blaess S, Joyner AL. Classical embryological studies and modern genetic analysis of midbrain and cerebellum development. Curr Top Dev Biol. 2005;69:101–38. PubMed PMID: 16243598. Epub 2005/10/26. eng.PubMedCrossRefGoogle Scholar
  28. 28.
    Martinez S, Andreu A, Mecklenburg N, Echevarria D. Cellular and molecular basis of cerebellar development. Front Neuroanat. 2013;7:18. PubMed PMID: 23805080. Pubmed Central PMCID: PMC3693072. Epub 2013/06/28. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Wurst W, Bally-Cuif L. Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci. 2001;2(2):99–108. PubMed PMID: 11253000. Epub 2001/03/17. eng.PubMedCrossRefGoogle Scholar
  30. 30.
    Chi CL, Martinez S, Wurst W, Martin GR. The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development. 2003;130(12):2633–44. PubMed PMID: 12736208.PubMedCrossRefGoogle Scholar
  31. 31.
    Crossley P, Martinez S, Martin G. Midbrain development induced by FGF8 in the chick embryo. Nature. 1996;380:66–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Martinez S, Crossley PH, Cobos I, Rubenstein JL, Martin GR. FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via a repressive effect on Otx2 expression. Development. 1999;126(6):1189–200.PubMedGoogle Scholar
  33. 33.
    Sato T, Joyner AL. The duration of Fgf8 isthmic organizer expression is key to patterning different tectal-isthmo-cerebellum structures. Development. 2009;136(21):3617–26. PubMed PMID: 19793884. Pubmed Central PMCID: 2761110. Epub 2009/10/02. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Matsunaga E, Katahira T, Nakamura H. Role of Lmx1b and Wnt1 in mesencephalon and metencephalon development. Development. 2002;129(22):5269–77. PubMed PMID: 12399317.PubMedGoogle Scholar
  35. 35.
    Danielian PS, McMahon AP, et al. Nature. 1996;383(9/26/96):332–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Blaess S, Corrales JD, Joyner AL. Sonic hedgehog regulates Gli activator and repressor functions with spatial and temporal precision in the mid/hindbrain region. Development. 2006;133:1799–809. PubMed PMID: 16571630.PubMedCrossRefGoogle Scholar
  37. 37.
    Blaess S, Stephen D, Joyner AL. Gli3 coordinates three-dimensional patterning and growth of the tectum and cerebellum by integrating Shh and Fgf8 signaling. Development. 2008;135(12):2093–103. PubMed PMID: 18480159. Pubmed Central PMCID: 2673693. Epub 2008/05/16. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Agarwala S, Sanders TA, Ragsdale CW. Sonic hedgehog control of size and shape in midbrain pattern formation. Science. 2001;291(5511):2147–50.PubMedCrossRefGoogle Scholar
  39. 39.
    Millen KJ, Wurst W, Herrup K, Joyner AL. Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed-2 mutants. Development. 1994;120(3):695–706. PubMed PMID: 7909289. Epub 1994/03/01. eng.PubMedGoogle Scholar
  40. 40.
    Wurst W, Auerbach AB, Joyner AL. Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development. 1994;120(7):2065–75. PubMed PMID: 7925010. Epub 1994/07/01. eng.PubMedGoogle Scholar
  41. 41.
    Cheng Y, Sudarov A, Szulc KU, Sgaier SK, Stephen D, Turnbull DH, et al. The Engrailed homeobox genes determine the different foliation patterns in the vermis and hemispheres of the mammalian cerebellum. Development. 2010;137(3):519–29. PubMed PMID: 20081196. Pubmed Central PMCID: 2858911. Epub 2010/01/19. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Orvis GD, Hartzell AL, Smith JB, Barraza LH, Wilson SL, Szulc KU, et al. The engrailed homeobox genes are required in multiple cell lineages to coordinate sequential formation of fissures and growth of the cerebellum. Dev Biol. 2012;367(1):25–39. PubMed PMID: 22564796. Pubmed Central PMCID: PMC4038292. Epub 2012/05/09. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Sgaier SK, Lao Z, Villanueva MP, Berenshteyn F, Stephen D, Turnbull RK, et al. Genetic subdivision of the tectum and cerebellum into functionally related regions based on differential sensitivity to engrailed proteins. Development. 2007;134(12):2325–35. PubMed PMID: 17537797. Pubmed Central PMCID: 2840613. Epub 2007/06/01. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Huang X, Liu J, Ketova T, Fleming JT, Grover VK, Cooper MK, et al. Transventricular delivery of Sonic hedgehog is essential to cerebellar ventricular zone development. Proc Natl Acad Sci U S A. 2010;107(18):8422–7. PubMed PMID: 20400693. Epub 2010/04/20. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Parmigiani E, Leto K, Rolando C, Figueres-Onate M, Lopez-Mascaraque L, Buffo A, et al. Heterogeneity and bipotency of astroglial-like cerebellar progenitors along the interneuron and glial lineages. J Neurosci. 2015;35(19):7388–402. PubMed PMID: 25972168. Epub 2015/05/15. eng.PubMedCrossRefGoogle Scholar
  46. 46.
    Hashimoto M, Mikoshiba K. Mediolateral compartmentalization of the cerebellum is determined on the “birth date” of Purkinje cells. J Neurosci. 2003;23(36):11342–51. PubMed PMID: 14672998. Epub 2003/12/16. eng.PubMedCrossRefGoogle Scholar
  47. 47.
    Miyata T, Ono Y, Okamoto M, Masaoka M, Sakakibara A, Kawaguchi A, et al. Migration, early axonogenesis, and Reelin-dependent layer-forming behavior of early/posterior-born Purkinje cells in the developing mouse lateral cerebellum. Neural Dev. 2010;5:23. PubMed Pubmed Central PMCID: PMC2942860. Epub 2010/09/03. Eng.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Legue E, Gottshall JL, Jaumouille E, Rosello-Diez A, Shi W, Barraza LH, et al. Differential timing of granule cell production during cerebellum development underlies generation of the foliation pattern. Neural Dev. 2016;11(1):17. PubMed PMID: 27609139. Pubmed Central PMCID: PMC5017010. Epub 2016/09/10. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Sotelo C, Rossi F. Purkinje cell migration and differentiation. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. New York: Springer Science+Business Media; 2013. p. 147–78.CrossRefGoogle Scholar
  50. 50.
    Sillitoe RV, Gopal N, Joyner AL. Embryonic origins of ZebrinII parasagittal stripes and establishment of topographic Purkinje cell projections. Neuroscience. 2009;162(3):574–88. PubMed PMID: 19150487. Pubmed Central PMCID: 2716412. Epub 2009/01/20. eng.PubMedCrossRefGoogle Scholar
  51. 51.
    Li P, Du F, Yuelling LW, Lin T, Muradimova RE, Tricarico R, et al. A population of Nestin-expressing progenitors in the cerebellum exhibits increased tumorigenicity. Nat Neurosci. 2013;16(12):1737–44. PubMed PMID: 24141309. Pubmed Central PMCID: PMC3845444. Epub 2013/10/22. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, et al. Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci. 2005;8(6):723–9. PubMed PMID: 15908947. Pubmed Central PMCID: PMC2377345. Epub 2005/05/24. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Klein C, Butt SJ, Machold RP, Johnson JE, Fishell G. Cerebellum- and forebrain-derived stem cells possess intrinsic regional character. Development. 2005;132(20):4497–508. PubMed PMID: 16162650. Epub 2005/09/16. eng.PubMedCrossRefGoogle Scholar
  54. 54.
    Corrales JD, Rocco GL, Blaess S, Guo Q, Joyner AL. Spatial pattern of sonic hedgehog signaling through Gli genes during cerebellum development. Development. 2004;131(22):5581–90. PubMed PMID: 15496441. Epub 2004/10/22. eng.PubMedCrossRefGoogle Scholar
  55. 55.
    Dahmane N, Ruiz i Altaba A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development. 1999;126(14):3089–100. PubMed PMID: 10375501. Epub 1999/06/22. eng.PubMedGoogle Scholar
  56. 56.
    Lewis PM, Gritli-Linde A, Smeyne R, Kottmann A, McMahon AP. Sonic hedgehog signaling is required for expansion of granule neuron precursors and patterning of the mouse cerebellum. Dev Biol. 2004;270(2):393–410. PubMed PMID: 15183722. Epub 2004/06/09. eng.PubMedCrossRefGoogle Scholar
  57. 57.
    Corrales JD, Blaess S, Mahoney EM, Joyner AL. The level of sonic hedgehog signaling regulates the complexity of cerebellar foliation. Development. 2006;133(9):1811–21. PubMed PMID: 16571625. Epub 2006/03/31. eng.PubMedCrossRefGoogle Scholar
  58. 58.
    De Luca A, Parmigiani E, Tosatto G, Martire S, Hoshino M, Buffo A, et al. Exogenous Sonic hedgehog modulates the pool of GABAergic interneurons during cerebellar development. Cerebellum. 2015;14(2):72–85. PubMed PMID: 25245619. Epub 2014/09/24. eng.PubMedCrossRefGoogle Scholar
  59. 59.
    Fleming J, Chiang C. The Purkinje neuron: a central orchestrator of cerebellar neurogenesis. Neurogenesis (Austin). 2015;2(1):e1025940. PubMed PMID: 27604220. Pubmed Central PMCID: PMC4973588. Epub 2015/01/01. eng.CrossRefGoogle Scholar
  60. 60.
    Millen KJ, Steshina EY, Iskusnykh IY, Chizhikov VV. Transformation of the cerebellum into more ventral brainstem fates causes cerebellar agenesis in the absence of Ptf1a function. Proc Natl Acad Sci U S A. 2014;111(17):E1777–86. PubMed PMID: 24733890. Pubmed Central PMCID: PMC4035921. Epub 2014/04/16. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Pascual M, Abasolo I, Mingorance-Le Meur A, Martinez A, Del Rio JA, Wright CV, et al. Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci U S A. 2007;104(12):5193–8. PubMed PMID: 17360405. Pubmed Central PMCID: 1829285. Epub 2007/03/16. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Russ JB, Borromeo MD, Kollipara RK, Bommareddy PK, Johnson JE, Kaltschmidt JA. Misexpression of ptf1a in cortical pyramidal cells in vivo promotes an inhibitory peptidergic identity. J Neurosci. 2015;35(15):6028–37. PubMed PMID: 25878276. Pubmed Central PMCID: PMC4397601. Epub 2015/04/17. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Yamada M, Terao M, Terashima T, Fujiyama T, Kawaguchi Y, Nabeshima Y, et al. Origin of climbing fiber neurons and their developmental dependence on Ptf1a. J Neurosci. 2007;27(41):10924–34. PubMed PMID: 17928434. Epub 2007/10/12. eng.PubMedCrossRefGoogle Scholar
  64. 64.
    Li K, Leung AW, Guo Q, Yang W, Li JY. Shp2-dependent ERK signaling is essential for induction of Bergmann glia and foliation of the cerebellum. J Neurosci. 2014;34(3):922–31. PubMed PMID: 24431450. Pubmed Central PMCID: PMC3891967. Epub 2014/01/17. Eng.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Fink AJ, Englund C, Daza RA, Pham D, Lau C, Nivison M, et al. Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci. 2006;26(11):3066–76. PubMed PMID: 16540585. Epub 2006/03/17. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, et al. Math1 is essential for genesis of cerebellar granule neurons. Nature. 1997;390(6656):169–72. PubMed PMID: 9367153. Epub 1997/11/21. eng.PubMedCrossRefGoogle Scholar
  67. 67.
    Flora A, Klisch TJ, Schuster G, Zoghbi HY. Deletion of Atoh1 disrupts Sonic Hedgehog signaling in the developing cerebellum and prevents medulloblastoma. Science. 2009;326(5958):1424–7. PubMed PMID: 19965762. Epub 2009/12/08. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Klisch TJ, Xi Y, Flora A, Wang L, Li W, Zoghbi HY. In vivo Atoh1 targetome reveals how a proneural transcription factor regulates cerebellar development. Proc Natl Acad Sci U S A. 2011;108(8):3288–93. PubMed PMID: 21300888. Pubmed Central PMCID: PMC3044384. Epub 2011/02/09. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Yamada M, Seto Y, Taya S, Owa T, Inoue YU, Inoue T, et al. Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons. J Neurosci. 2014;34(14):4786–800. PubMed PMID: 24695699. Epub 2014/04/04. eng.PubMedCrossRefGoogle Scholar
  70. 70.
    Hatten ME, Roussel MF. Development and cancer of the cerebellum. Trends Neurosci. 2011;34(3):134–42. PubMed PMID: 21315459. Pubmed Central PMCID: PMC3051031. Epub 2011/02/15. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Espinosa JS, Luo L. Timing neurogenesis and differentiation: insights from quantitative clonal analyses of cerebellar granule cells. J Neurosci. 2008;28(10):2301–12. PubMed PMID: 18322077. Pubmed Central PMCID: 2586640. Epub 2008/03/07. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Legue E, Riedel E, Joyner AL. Clonal analysis reveals granule cell behaviors and compartmentalization that determine the folded morphology of the cerebellum. Development. 2015;142(9):1661–71. PubMed PMID: 25834018. Pubmed Central PMCID: PMC4419279. Epub 2015/04/03. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L. Mosaic analysis with double markers in mice. Cell. 2005;121(3):479–92. PubMed PMID: 15882628.PubMedCrossRefGoogle Scholar
  74. 74.
    Chedotal A, Sotelo C. Early development of olivocerebellar projections in the fetal rat using CGRP immunocytochemistry. Eur J Neurosci. 1992;4(11):1159–79. PubMed PMID: 12106421. Epub 1992/10/01. Eng.PubMedCrossRefGoogle Scholar
  75. 75.
    Paradies MA, Eisenman LM. Evidence of early topographic organization in the embryonic olivocerebellar projection: a model system for the study of pattern formation processes in the central nervous system. Dev Dyn. 1993;197:125–45.PubMedCrossRefGoogle Scholar
  76. 76.
    Mason CA, Christakos S, Catalano SM. Early climbing fiber interactions with Purkinje cells in the postnatal mouse cerebellum. J Comp Neurol. 1990;297(1):77–90. PubMed PMID: 1695909. Epub 1990/07/01. Eng.PubMedCrossRefGoogle Scholar
  77. 77.
    Morara S, van der Want JJ, de Weerd H, Provini L, Rosina A. Ultrastructural analysis of climbing fiber-Purkinje cell synaptogenesis in the rat cerebellum. Neuroscience. 2001;108(4):655–71. PubMed PMID: 11738501. Epub 2001/12/12. Eng.PubMedCrossRefGoogle Scholar
  78. 78.
    Kita Y, Tanaka K, Murakami F. Specific labeling of climbing fibers shows early synaptic interactions with immature Purkinje cells in the prenatal cerebellum. Dev Neurobiol. 2015;75(9):927–34. PubMed PMID: 25529108. Epub 2014/12/23. Eng.PubMedCrossRefGoogle Scholar
  79. 79.
    Schild RF. On the inferior olive of the albino rat. J Comp Neurol. 1970;140(3):255–60. PubMed PMID: 5476885. Epub 1970/11/01. Eng.PubMedCrossRefGoogle Scholar
  80. 80.
    Crepel F, Mariani J, Delhaye-Bouchaud N. Evidence for a multiple innervation of Purkinje cells by climbing fibers in the immature rat cerebellum. J Neurobiol. 1976;7(6):567–78. PubMed PMID: 1003202. Epub 1976/11/01. Eng.PubMedCrossRefGoogle Scholar
  81. 81.
    Mariani J, Changeux JP. Ontogenesis of olivocerebellar relationships. I. Studies by intracellular recordings of the multiple innervation of Purkinje cells by climbing fibers in the developing rat cerebellum. J Neurosci. 1981;1(7):696–702. PubMed PMID: 7346578. Epub 1981/07/01. Eng.PubMedCrossRefGoogle Scholar
  82. 82.
    Mariani J, Changeux JP. Ontogenesis of olivocerebellar relationships. II. Spontaneous activity of inferior olivary neurons and climbing fibermediated activity of cerebellar Purkinje cells in developing rats. J Neurosci. 1981;1(7):703–9. PubMed PMID: 7346579. Epub 1981/07/01. Eng.PubMedCrossRefGoogle Scholar
  83. 83.
    Ashwell KW, Zhang LL. Ontogeny of afferents to the fetal rat cerebellum. Acta Anat (Basel). 1992;145(1):17–23. PubMed PMID: 1414208. Epub 1992/01/01. Eng.CrossRefGoogle Scholar
  84. 84.
    Kalinovsky A, Boukhtouche F, Blazeski R, Bornmann C, Suzuki N, Mason CA, et al. Development of axon-target specificity of ponto-cerebellar afferents. PLoS Biol. 2011;9(2):e1001013. PubMed PMID: 21346800. Pubmed Central PMCID: PMC3035609. Epub 2011/02/25. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Leto K, Arancillo M, Becker EB, Buffo A, Chiang C, Ding B, et al. Consensus paper: cerebellar development. Cerebellum. 2015. PubMed PMID: 26439486. Pubmed Central PMCID: PMC4846577. Epub 2015/10/07. Eng.Google Scholar
  86. 86.
    Sillitoe RV, Joyner AL. Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol. 2007;23:549–77. PubMed PMID: 17506688. Epub 2007/05/18. eng.PubMedCrossRefGoogle Scholar
  87. 87.
    Ozol K, Hayden JM, Oberdick J, Hawkes R. Transverse zones in the vermis of the mouse cerebellum. J Comp Neurol. 1999;412(1):95–111. PubMed PMID: 10440712. Epub 1999/08/10. eng.PubMedCrossRefGoogle Scholar
  88. 88.
    Inouye M, Oda SI. Strain-specific variations in the folial pattern of the mouse cerebellum. J Comp Neurol. 1980;190(357):357–62.PubMedCrossRefGoogle Scholar
  89. 89.
    Sudarov A, Joyner AL. Cerebellum morphogenesis: the foliation pattern is orchestrated by multi-cellular anchoring centers. Neural Dev. 2007;2:26. PubMed PMID: 18053187. Pubmed Central PMCID: 2246128. Epub 2007/12/07. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Yang ZJ, Ellis T, Markant SL, Read TA, Kessler JD, Bourboulas M, et al. Medulloblastoma can be initiated by deletion of patched in lineage-restricted progenitors or stem cells. Cancer Cell. 2008;14(2):135–45. PubMed PMID: 18691548. Pubmed Central PMCID: PMC2538687. Epub 2008/08/12. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Schuller U, Heine VM, Mao J, Kho AT, Dillon AK, Han YG, et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell. 2008;14(2):123–34. PubMed PMID: 18691547. Pubmed Central PMCID: PMC2597270. Epub 2008/08/12. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Meier F, Giesert F, Delic S, Faus-Kessler T, Matheus F, Simeone A, et al. FGF/FGFR2 signaling regulates the generation and correct positioning of Bergmann glia cells in the developing mouse cerebellum. PLoS One. 2014;9(7):e101124. PubMed PMID: 24983448. Pubmed Central PMCID: PMC4077754. Epub 2014/07/02. Eng.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Haldipur P, Gillies GS, Janson OK, Chizhikov VV, Mithal DS, Miller RJ, et al. Foxc1 dependent mesenchymal signalling drives embryonic cerebellar growth. elife. 2014;16:3. PubMed PMID: 25513817. Pubmed Central PMCID: PMC4281880. Epub 2014/12/17. Eng.Google Scholar
  94. 94.
    Mulherkar S, Uddin MD, Couvillon AD, Sillitoe RV, Tolias KF. The small GTPases RhoA and Rac1 regulate cerebellar development by controlling cell morphogenesis, migration and foliation. Dev Biol. 2014;394(1):39–53. PubMed PMID: 25128586. Pubmed Central PMCID: PMC4163514. Epub 2014/08/17. Eng.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Bayly PV, Taber LA, Kroenke CD. Mechanical forces in cerebral cortical folding: a review of measurements and models. J Mech Behav Biomed Mater. 2014;29:568–81. PubMed PMID: 23566768. Pubmed Central PMCID: PMC3842388. Epub 2013/04/10. Eng.PubMedCrossRefGoogle Scholar
  96. 96.
    Ronan L, Voets N, Rua C, Alexander-Bloch A, Hough M, Mackay C, et al. Differential tangential expansion as a mechanism for cortical gyrification. Cereb Cortex. 2014;24(8):2219–28. PubMed PMID: 23542881. Pubmed Central PMCID: PMC4089386. Epub 2013/04/02. Eng.PubMedCrossRefGoogle Scholar
  97. 97.
    Bayly PV, Okamoto RJ, Xu G, Shi Y, Taber LA. A cortical folding model incorporating stress-dependent growth explains gyral wavelengths and stress patterns in the developing brain. Phys Biol. 2013;10(1):016005. PubMed PMID: 23357794. Pubmed Central PMCID: PMC3616769. Epub 2013/01/30. Eng.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Tallinen T, Chung JY, Biggins JS, Mahadevan L. Gyrification from constrained cortical expansion. Proc Natl Acad Sci U S A. 2014;111(35):12667–72. PubMed PMID: 25136099. Pubmed Central PMCID: PMC4156754. Epub 2014/08/20. Eng.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Tallinen T, Chung JY, Rousseau F, Girard N, Lefèvre J, Mahadevan L. On the growth and form of cortical convolutions. Nat Phys. 2016;12:588–93.CrossRefGoogle Scholar
  100. 100.
    Mota B, Herculano-Houzel S. BRAIN STRUCTURE. Cortical folding scales universally with surface area and thickness, not number of neurons. Science. 2015;349(6243):74–7. PubMed PMID: 26138976. Epub 2015/07/04. Eng.PubMedCrossRefGoogle Scholar
  101. 101.
    Lejeune E, Javili A, Weickenmeier J, Kuhl E, Linder C. Tri-layer wrinkling as a mechanism for anchoring center initiation in the developing cerebellum. Soft Matter. 2016;12(25):5613–20. PubMed PMID: 27252048. Epub 2016/06/03. Eng.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alexandra L. Joyner
    • 1
    Email author
  • Ryan Willett
    • 1
  • Andrew Lawton
    • 1
  1. 1.Developmental Biology Program, Memorial Sloan Kettering Cancer Center, and Weill Cornell Graduate ProgramNew YorkUSA

Personalised recommendations