Advertisement

Teratogenic Influences on Cerebellar Development

  • Albert E. ChudleyEmail author
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

The effects of environmental agents on cerebellar development are profound, and this organ has not been given the attention that is deserving of it, based on its importance in motor, cognitive, and behavioral functions. This chapter will review select agents associated with teratogenic effects on cerebellar structure and function. Mechanisms of teratogenesis and genetic influences will be addressed. The emerging role of effects of environmental agents and effect on the epigenetic mechanisms and gene expression are discussed. Prenatal alcohol exposure and fetal alcohol spectrum disorder will be discussed in greater detail, as this disorder is the most common teratogenic disorder affecting humans. Indeed, many of the phenotypic effects of FASD are the result of cerebellar injury and dysfunction.

Keywords

Teratogenesis Brain imaging Birth defects Prenatal exposures Viral infections Zika virus Rubella Anticonvulsants Valproic acid Alcohol Genetic factors Epigenetics Fetal alcohol spectrum disorder 

References

  1. 1.
    Ujházy E, Mach M, Navarová J, Brucknerová I, Dubovický M. Teratology – past, present and future. Interdiscip Toxicol. 2012;5(4):163–8.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Wilson JG. Environment and birth defects. New York: Academic Press; 1973.Google Scholar
  3. 3.
    Frías JL, Gilbert-Barness E. Human teratogens: current controversies. Adv Pediatr Infect Dis. 2008;55:171–211.Google Scholar
  4. 4.
    Holmes LB. Human teratogens: update 2010. Birth Defects Res A Clin Mol Teratol. 2011;91(1):1–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Persaud TVN, Chudley AE, Skalko RG. Basic concepts in teratology. New York: Alan R. Liss; 1985.Google Scholar
  6. 6.
    Brent RL, Beckman DA. Environmental teratogens. Bull N Y Acad Med. 1990;66(2):123–63.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Shakiba A. The role of the cerebellum in neurobiology of psychiatric disorders. Neurol Clin. 2014;32(4):1105–15.PubMedCrossRefGoogle Scholar
  8. 8.
    Poretti A, Boltshauser E, Doherty D. Cerebellar hypoplasia: differential diagnosis and diagnostic approach. Am J Med Genet C: Semin Med Genet. 2014;166C(2):211–26.CrossRefGoogle Scholar
  9. 9.
    Stoodley CJ. The cerebellum and neurodevelopmental disorders. Cerebellum. 2016;15(1):34–7.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Mariën P, Ackermann H, Adamaszek M, Barwood CH, Beaton A, Desmond J, De Witte E, Fawcett AJ, Hertrich I, Küper M, Leggio M, Marvel C, Molinari M, Murdoch BE, Nicolson RI, Schmahmann JD, Stoodley CJ, Thürling M, Timmann D, Wouters E, Ziegler W. Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum. 2014;13(3):386–410.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Holson RR, Gazzara RA, Ferguson SA, Ali SF, Laborde JB, Adams J. Gestational retinoic acid exposure: a sensitive period for effects on neonatal mortality and cerebellar development. Neurotoxicol Teratol. 1997;19(5):335–46.PubMedCrossRefGoogle Scholar
  12. 12.
    Pastuszak AL, Schler L, Speck Martins CE, et al. Use of misoprostol during pregnancy and Moebius’ syndrome in infants. N Engl J Med. 1998;338(26):1881–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Merlini L, Fluss J, Dhouib A, Vargas MI, Becker M. Mid-hindbrain malformations due to drugs taken during pregnancy. J Child Neurol. 2014;29(4):538–44.PubMedCrossRefGoogle Scholar
  14. 14.
    Adams Waldorf KM, McAdams RM. Influence of infection during pregnancy on fetal development. Reproduction. 2013;146(5):151–62.CrossRefGoogle Scholar
  15. 15.
    Neu N, Duchon J, Zachariah P. TORCH infections. Clin Perinatol. 2015;42(1):77–103.PubMedCrossRefGoogle Scholar
  16. 16.
    Barkovich AJ, Raybaud C. Pediatric neuroimaging. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2012.Google Scholar
  17. 17.
    Gregg NM. Congenital cataract following German measles in the mother. Trans Ophthalmol Soc Aust. 1941;3:35–45.Google Scholar
  18. 18.
    Rosenberg HS, Oppenheimer EH, Esterly JR. Congenital rubella syndrome: the late effects and their relation to early lesions. Perspect Pediatr Pathol. 1981;6:183–202.PubMedGoogle Scholar
  19. 19.
    Dudgeon JA. Congenital rubella. J Pediatr. 1975;87:1078–86.PubMedCrossRefGoogle Scholar
  20. 20.
    Townsend JJ, Wolinsky JS, Baringer JR. The neuropathology of progressive rubella panencephalitis of late onset. Brain. 1976;99(1):81–90.PubMedCrossRefGoogle Scholar
  21. 21.
    Cluver C, Meyer R, Odendaal H, Geerts L. Congenital rubella with agenesis of the inferior cerebellar vermis and total anomalous pulmonary venous drainage. Ultrasound Obstet Gynecol. 2013;42(2):235–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Webster WS. Teratogen update: congenital rubella. Teratology. 1998;58:13–23.PubMedCrossRefGoogle Scholar
  23. 23.
    Burd I, Balakrishnan B, Kannan S. Models of fetal brain injury, intrauterine inflammation, and preterm birth. Am J Reprod Immunol. 2012 Apr;67(4):287–94.PubMedCrossRefGoogle Scholar
  24. 24.
    Sze G, Lee SH. Infectious disease. In: Lee SH, KCVG R, Zimmerman RA, editors. Cranial MRI and CT. 4th ed. New York: Mc Graw-Hill; 1999.Google Scholar
  25. 25.
    Huleihel M, Golan H, Hallak M. Intrauterine infection/inflammation during pregnancy and offspring brain damages: possible mechanisms involved. Reprod Biol Endocrinol. 2004;2:17.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR. Zika virus and birth defects – reviewing the evidence for causality. N Engl J Med. 2016;374(20):1981–7.PubMedCrossRefGoogle Scholar
  27. 27.
    de Fatima Vasco Aragao M, van der Linden V, Brainer-Lima AM, Coeli RR, Rocha MA, Sobral da Silva P, Dur Cecosta Gomes de Carvalho M, van der Linden A, Cesario de Holanda A, Valenca MM. Clinical features and neuroimaging (CT and MRI) findings in presumed Zika virus related congenital infection and microcephaly: retrospective case series study. BMJ. 2016;353:i1901.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    van der Linden V, Filho EL, Lins OG, van der Linden A, Aragão Mde F, Brainer-Lima AM, Cruz DD, Rocha MA, Sobral da Silva PF, Carvalho MD, do Amaral FJ, Gomes JA, Ribeiro de Medeiros IC, Ventura CV, Ramos RC. Congenital Zika syndrome with arthrogryposis: retrospective case series study. BMJ. 2016;354:i3899.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Faria NR, Azevedo RSS, Kraemer MUG, Souza R, Cunha MS, Hill SC, et al. Zika virus in the Americas: early epidemiological and genetic findings. Science. 2016;352:345–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Araujo AQ, Silva MT, Araujo AP. Zika virus-associated neurological disorders: a review. Brain. 2016;139(Pt 8):2122–30.PubMedCrossRefGoogle Scholar
  31. 31.
    Soares de Oliveira-Szejnfeld P, Levine D, Melo AS, Amorim MM, Batista AG, Chimelli L, et al. Congenital brain abnormalities and Zika Virus: what the radiologist can expect to see prenatally and postnatally. Radiology. 2016;281:203–18. 161584PubMedCrossRefGoogle Scholar
  32. 32.
    Leal MC, Muniz LF, Ferreira TS, et al. Hearing loss in infants with microcephaly and evidence of congenital Zika virus infection – Brazil, November 2015–May 2016. MMWR Morb Mortal Wkly Rep. 2016;65:917–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Dick GW, Kitchen SF, Haddow AJ. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg. 1952;46:509–20.PubMedCrossRefGoogle Scholar
  34. 34.
    Macnamara FN. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg. 1954;48:139–45.PubMedCrossRefGoogle Scholar
  35. 35.
    Russell K, Oliver SE, Lewis L, Barfield WD, Cragan J, Meaney-Delman D, et al. Update: interim guidance for the evaluation and Management of Infants with possible congenital Zika virus infection – United States, August 2016. MMWR Morb Mortal Wkly Rep. 2016;65(33):870–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Paixão ES, Barreto F, Teixeira Mda G, Costa Mda C, Rodrigues LC. History, epidemiology, and clinical manifestations of Zika: a systematic review. Am J Public Health. 2016;106(4):606–12.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hazin AN, Poretti A, Turchi Martelli CM, Huisman TA, Microcephaly Epidemic Research Group. Computed tomographic findings in microcephaly associated with Zika virus. N Engl J Med. 2016;374(22):2193–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Garcez PP, Loiola EC, Madeiro da Costa R, Higa LM, Trindade P, et al. Zika virus impairs growth in human neurospheres and brain organoids. Science. 2016;352(6287):816–8.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Tang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell. 2016;18(5):587–90.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Durbin AP. Vaccine development for Zika virus-timelines and strategies. Semin Reprod Med. 2016 Sep;8Google Scholar
  41. 41.
    Barreto ML, Barral-Netto M, Stabeli R, Almeida-Filho N, Vasconcelos PF, Teixeira M, et al. Zika virus and microcephaly in Brazil: a scientific agenda. Lancet. 2016;387:919–21.PubMedCrossRefGoogle Scholar
  42. 42.
    Chang SI, McAuley JW. Pharmacotherapeutic issues for women of childbearing age with epilepsy. Ann Pharmacother. 1998;32(7–8):794–801.PubMedCrossRefGoogle Scholar
  43. 43.
    Speidel BD, Meadow SR. Maternal epilepsy and abnormalities of the fetus and the newborn. Lancet. 1972;2:839–43.PubMedCrossRefGoogle Scholar
  44. 44.
    Hill RM, Verniaud WM, Horning MG, McCulley LB, Morgan NF. Infants exposed in utero t antiepileptic drugs: a prospective study. Am J Dis Child. 1974;127:645–53.PubMedCrossRefGoogle Scholar
  45. 45.
    Hanson JW, Smith DW. The fetal hydantoin syndrome. J Pediatr. 1975;87:285–90.PubMedCrossRefGoogle Scholar
  46. 46.
    Hanson JW, Myrianthopoulos NC, Harvey MA, Smith DW. Risks to the offspring of women treated with hydantoin anticonvulsants, with emphasis on the fetal hydantoin syndrome. J Pediatr. 1976;89(4):662–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Seip M. Growth retardation, dysmorphic facies and minor malformations following massive exposure to phenobarbitone in utero. Acta Paediatr Scand. 1976;65:617–21.PubMedCrossRefGoogle Scholar
  48. 48.
    Jones KL, Lacro RV, Johnson KA, Adams J. Pattern of malformations in the children of women treated with carbamazepine during pregnancy. N Engl J Med. 1989;320:1661–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Lindhout D, Hoppener RJEA, Meinardi H. Teratogenicity of antiepilepticdrug combinations with special emphasis on epoxidation (of carbamazepine). Epilepsia. 1984;25:77–83.PubMedCrossRefGoogle Scholar
  50. 50.
    Holmes LB, Harvey EA, Coull BA, et al. The teratogenicity of anticonvulsant drugs. N Engl J Med. 2001;344(15):1132–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Morrow J, Russell A, Guthrie E, Parsons L, Robertson I, Waddell R, et al. Malformation risks of antiepileptic drugs in pregnancy: a prospective study from the UK epilepsy and pregnancy register. J Neurol Neurosurg Psychiatry. 2006;77(2):193–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Dansky LV, Finnell RH. Parental epilepsy, anticonvulsant drugs, and reproductive outcome: epidemiologic and experimental findings spanning three decades; 2: human studies. Reprod Toxicol. 1991;5(4):301–35.PubMedCrossRefGoogle Scholar
  53. 53.
    Jentink J, Loane MA, Dolk H, Barisic I, Garne E, Morris JK, de Jong-van den Berg LT, EUROCAT Antiepileptic Study Working Group. Valproic acid monotherapy in pregnancy and major congenital malformations. N Engl J Med. 2010;362(23):2185–93.PubMedCrossRefGoogle Scholar
  54. 54.
    Buehler BA, Delimont D, van Waes M, Finnell RH. Prenatal prediction of risk of the fetal hydantoin syndrome. N Engl J Med. 1990;322(22):1567–72.PubMedCrossRefGoogle Scholar
  55. 55.
    Strickler SM, Dansky LV, Miller MA, Seni M-H, Andermann E, Spielberg SP. Genetic predisposition to phenytoin-induced birth defects. Lancet. 1985;2:746–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Wells PG, Winn LM. Biochemical toxicology of chemical teratogenesis. Clin Rev Biochem Mol Biol. 1996;31:1–40.CrossRefGoogle Scholar
  57. 57.
    Hill DS, Wlodarczyk BJ, Palacios AM, Finnell RH. Teratogenic effects of antiepileptic drugs. Expert Rev Neurother. 2010;10(6):943–59.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    DiLiberti JH, Farndon PA, Dennis NR, Curry CJ. The fetal valproate syndrome. Am J Med Genet. 1984;19(3):473–81.PubMedCrossRefGoogle Scholar
  59. 59.
    Ardinger HH, Atkin JF, Blackston RD, Elsas LJ, Clarren SK, Livingstone S, et al. Verification of the fetal valproate syndrome phenotype. Am J Med Genet. 1988;29(1):171–85.PubMedCrossRefGoogle Scholar
  60. 60.
    Winter RM, Donnai D, Burn J, Tucker SM. Fetal valproate syndrome: is there a recognisable phenotype? J Med Genet. 1987;24(11):692–5.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Morrow JI, Hunt SJ, Russell AJ, et al. Folic acid use and major congenital malformations in offspring of women with epilepsy: a prospective study from the UK epilepsy and pregnancy register. J Neurol Neurosurg Psychiatry. 2009;80(5):506–11.PubMedCrossRefGoogle Scholar
  62. 62.
    Christianson AL, Chesler N, Kromberg JG. Fetal valproate syndrome: clinical and neuro-developmental features in two sibling pairs. Dev Med Child Neurol. 1994;36(4):361–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, Vestergaard M. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA. 2013;309(16):1696–703.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Ingram JL, Peckham SM, Tisdale B, Rodier PM. Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicol Teratol. 2000;22(3):319–24.PubMedCrossRefGoogle Scholar
  65. 65.
    Kim KC, Kim P, Go HS, Choi CS, Park JH, Kim HJ, et al. Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. J Neurochem. 2013;124(6):832–43.PubMedCrossRefGoogle Scholar
  66. 66.
    Ergaz Z, Weinmstein-Fudim L, Ornoy A. Genetic and non-genetic animal models for autism spectrum disorders (ASD). Reprod Toxicol. 2016;64:116–40.PubMedCrossRefGoogle Scholar
  67. 67.
    Ghosh VB, Kapoor S, Prakash A, Bhatt S. Cerebellar atrophy in a child with valproate toxicity. Indian J Pediatr. 2011;78(8):999–1001.PubMedCrossRefGoogle Scholar
  68. 68.
    Papazian O, Cañizales E, Alfonso I, Archila R, Duchowny M, Aicardi J. Reversible dementia and apparent brain atrophy during valproate therapy. Ann Neurol. 1995;38(4):687–91.PubMedCrossRefGoogle Scholar
  69. 69.
    Twardowschy CA, Werneck LC, Scola RH, Borgio JG, De Paola L, Silvado C. The role of CYP2C9 polymorphisms in phenytoin-related cerebellar atrophy. Seizure. 2013;22(3):194–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Ney GC, Lantos G, Barr WB, Schaul N. Cerebellar atrophy in patients with long-term phenytoin exposure and epilepsy. Arch Neurol. 1994;51(8):767–71. Mar;42(1):77–103PubMedCrossRefGoogle Scholar
  71. 71.
    Lemoine P, Harousseau H, Borteyru JP, Menuet JC. Les enfants de parents alcooliques. Ouest Med. 1968;21:476–82.Google Scholar
  72. 72.
    Jones KL, Smith DW, Ulleland CN, Streissguth P. Pattern of malformation in offspring of chronic alcoholic mothers. Lancet. 1973;1(7815):1267–71.PubMedCrossRefGoogle Scholar
  73. 73.
    Jones KL, Smith DW. Recognition of the fetal alcohol syndrome in early infancy. Lancet. 1973;302(7836):999–1001.PubMedCrossRefGoogle Scholar
  74. 74.
    Sulik KK, Johnston MC, Webb MA. Fetal alcohol syndrome: embryogenesis in a mouse model. Science. 1981;214(4523):936–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Valenzuela CF, Morton RA, Diaz MR, Topper L. Does moderate drinking harm the fetal brain? Insights from animal models. Trends Neurosci. 2012;35(5):284–92.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Sadrian B, Lopez-Guzman M, Wilson DA, Saito M. Distinct neurobehavioral dysfunction based on the timing of developmental binge-like alcohol exposure. Neuroscience. 2014;280:204–19.PubMedCrossRefGoogle Scholar
  77. 77.
    Clarren SK. Recognition of fetal alcohol syndrome. J Am Med Assoc. 1981;245(23):2436–9.CrossRefGoogle Scholar
  78. 78.
    Clarren SK, Smith DW. The fetal alcohol syndrome. Lamp. 1978;35(10):4–7.PubMedGoogle Scholar
  79. 79.
    Stratton K, Howe C. Battaglia. Fetal alcohol syndrome: diagnosis, epidemiology, prevention, and treatment. Institute of Medicine (IOM). Washington, DC: National Academy Press; 1996.Google Scholar
  80. 80.
    Aase JM, Jones KL, Clarren SK. Do we need the term “FAE”? Pediatrics. 1995;95(3):428–30.PubMedGoogle Scholar
  81. 81.
    Astley SJ, Clarren SK. Diagnosing the full spectrum of fetal alcohol-exposed individuals: introducing the 4-digit diagnostic code. Alcohol Alcohol. 2000;35(4):400–10.PubMedCrossRefGoogle Scholar
  82. 82.
    Chudley AE, Conry J, Cook JL, Loock C, Rosales T, LeBlanc N, Public Health Agency of Canada’s National Advisory Committee on Fetal Alcohol Spectrum Disorder. Fetal alcohol spectrum disorder: Canadian guidelines for diagnosis. CMAJ. 2005;172(5 Suppl):S1–S21.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Hoyme HE, May PA, Kalberg WO, Kodituwakku P, Gossage JP, Trujillo PM, et al. A practical clinical approach to diagnosis of fetal alcohol spectrum disorders: clarification of the 1996 Institute of Medicine criteria. Pediatrics. 2005;115(1):39–47.PubMedCrossRefGoogle Scholar
  84. 84.
    Cook JL, Green CR, Lilley CM, Anderson SM, Baldwin ME, Chudley AE, Canada Fetal Alcohol Spectrum Disorder Research Network, et al. Fetal alcohol spectrum disorder: a guideline for diagnosis across the lifespan. CMAJ. 2016;188(3):191–7.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Hoyme HE, Kalberg WO, Elliott AJ, Blankenship J, Buckley D, Marais AS, et al. Updated clinical guidelines for diagnosing fetal alcohol spectrum disorders. Pediatrics. 2016;138(2) pii: e20154256. doi: 10.1542/peds.2015-4256. Epub 2016 Jul 27.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Leibson T, Neuman G, Chudley AE, Koren G. The differential diagnosis of fetal alcohol spectrum disorder. J Popul Ther Clin Pharmacol. 2014;21(1):e1–e30.PubMedGoogle Scholar
  87. 87.
    Popova S, Lange S, Shield K, Mihic A, Chudley AE, Mukherjee RA, Bekmuradov D, Rehm J. Comorbidity of fetal alcohol spectrum disorder: a systematic review and meta-analysis. Lancet. 2016;387(10022):978–87.PubMedCrossRefGoogle Scholar
  88. 88.
    Goh YI, Chudley AE, Clarren SK, Koren G, Orrbine E, et al. Development of Canadian screening tools for fetal alcohol spectrum disorder. Can J Clin Pharmacol. 2008;15(2):e344–66.PubMedGoogle Scholar
  89. 89.
    Streissguth A, Barr H, Kogan J, Bookstein F. Primary and secondary disabilities in fetal alcohol syndrome. In: Streissguth AP, Kanter J, editors. The challenge of fetal alcohol syndrome: overcoming secondary disabilities. Seattle: University of Washington Press; 1997.Google Scholar
  90. 90.
    Streissguth AP, Bookstein FL, Barr HM, Sampson PD, O’Malley K, Young JK. Risk factors for adverse life outcomes in fetal alcohol syndrome and fetal alcohol effects. J Dev Behav Pediatr. 2004;25(4):228–38.PubMedCrossRefGoogle Scholar
  91. 91.
    May PA, Baete A, Russo J, Elliott AJ, Blankenship J, Kalberg WO, et al. Prevalence and characteristics of fetal alcohol spectrum disorders. Pediatrics. 2014;134(5):855–66.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    May PA, Fiorentino D, Coriale G, Kalberg WO, Hoyme HE, Aragon AS, et al. Prevalence of children with severe fetal alcohol spectrum disorders in communities near Rome, Italy: new estimated rates are higher than previous estimates. Int J Environ Res Public Health. 2011;8(6):2331–51.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    May PA, de Vries MM, Marais AS, Kalberg WO, Adnams CM, Hasken JM, et al. The continuum of fetal alcohol spectrum disorders in four rural communities in South Africa: prevalence and characteristics. Drug Alcohol Depend. 2016;159:207–18.PubMedCrossRefGoogle Scholar
  94. 94.
    Astley SJ, Bailey D, Talbot C, Clarren SK. Fetal alcohol syndrome (FAS) primary prevention through FAS diagnosis: I. Identification of high-risk birth mothers through the diagnosis of their children. Alcohol Alcohol. 2000;35(5):499–508.PubMedCrossRefGoogle Scholar
  95. 95.
    Sulik KK, O’Leary-Moore SK, Riley EP. Better safe than sorry. BJOG. 2012;119(10):1159–61.PubMedCrossRefGoogle Scholar
  96. 96.
    Avery MR, Droste N, Giorgi C, Ferguson A, Martino F, Coomber K, Miller P. Mechanisms of influence: alcohol industry submissions to the inquiry into fetal alcohol spectrum disorders. Drug Alcohol Rev. 2016;35:665.PubMedCrossRefGoogle Scholar
  97. 97.
    Popova S, Lange S, Burd L, Rehm J. Canadian children and youth in care: the cost of fetal alcohol spectrum disorder. Child Youth Care Forum. 2014;43:83–96.PubMedCrossRefGoogle Scholar
  98. 98.
    Popova S, Lange S, Burd L, Rehm J. The economic burden of fetal alcohol spectrum disorder in Canada in 2013. Alcohol Alcohol. 2016;51(3):367–75.PubMedCrossRefGoogle Scholar
  99. 99.
    Riley EP, Clarren S, Weinberg J, Johnsson E, editors. Fetal alcohol spectrum disorder: management and policy perspectives of FASD. New York: Wiley-Blackwell; 2011.Google Scholar
  100. 100.
    Randall CL, Ekblad U, Anton RF. Perspectives on the pathophysiology of fetal alcohol syndrome. Alcohol Clin Exp Res. 1990;14(6):807–12.PubMedCrossRefGoogle Scholar
  101. 101.
    Goodlett CR, Gilliam DM, Nichols JM, West JR. Genetic influences on brain growth restriction induced by development exposure to alcohol. Neurotoxicology. 1989;10(3):321–34.PubMedGoogle Scholar
  102. 102.
    Goodlett CR, Horn KH, Zhou FC. Alcohol teratogenesis: mechanisms of damage and strategies for intervention. Exp Biol Med (Maywood). 2005;230:394–406.CrossRefGoogle Scholar
  103. 103.
    Sulik KK. Fetal alcohol spectrum disorder: pathogenesis and mechanisms. Handb Clin Neurol. 2014;125:463–75.PubMedCrossRefGoogle Scholar
  104. 104.
    Parnell SE, O’Leary-Moore SK, Godin EA, Dehart DB, Johnson BW, Allan Johnson G, et al. Magnetic resonance microscopy defines ethanol-induced brain abnormalities in prenatal mice: effects of acute insult on gestational day 8. Alcohol Clin Exp Res. 2009;33(6):1001–11.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Parnell SE, Holloway HT, O’Leary-Moore SK, Dehart DB, Paniaqua B, et al. Magnetic resonance microscopy-based analyses of the neuro-anatomical effects of gestational day 9 ethanol exposure in mice. Neurotoxicol Teratol. 2013;39:77–83.PubMedCrossRefGoogle Scholar
  106. 106.
    Young JK, Giesbrecht HE, Eskin MN, Aliani M, Suh M. Nutrition implications for fetal alcohol spectrum disorder. Adv Nutr. 2014;5(6):675–92.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    May PA, Gossage JP. Maternal risk factors for fetal alcohol spectrum disorders: not as simple as it might seem. Alcohol Res Health. 2011;34(1):15–26.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Warren KR, Li TK. Genetic polymorphisms: impact on the risk of fetal alcohol spectrum disorders. Birth Defects Res A Clin Mol Teratol. 2005;73(4):195–203.PubMedCrossRefGoogle Scholar
  109. 109.
    McCarver DG, Thomasson HR, Martier SS, Sokol RJ, Li T. Alcohol dehydrogenase-2*3 allele protects against alcohol-related birth defects among African Americans. J Pharmacol Exp Ther. 1997;283(3):1095–101.PubMedGoogle Scholar
  110. 110.
    Chudley AE. Genetic factors contributing to fetal alcohol spectrum disorder. In: Riley EP, Clarren S, Weinberg J, Johnsson E, editors. Fetal alcohol spectrum disorder: management and policy perspectives of FASD. Weinheim: Wiley; 2011.Google Scholar
  111. 111.
    Corkery T, Chudley AE. A review of genetic and epigenetic factors in Fetal Alcohol Spectrum Disorder (FASD). XLIIIèmes Journées Nationales de Néonatologie 2013. 33 Progress en Néonatologie. Jarreau P-H et Moriette G coord. Paris.Google Scholar
  112. 112.
    Lewis SJ, Zuccolo L, Davey Smith G, Macleod J, Rodriguez S, Draper ES, et al. Fetal alcohol exposure and IQ at age 8: evidence from a population-based birth-cohort study. PLoS One. 2012;7(11):e49407.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Guerri C. Mechanisms involved in central nervous system dysfunctions induced by prenatal ethanol exposure. Neurotox Res. 2002;4(4):327–35.PubMedCrossRefGoogle Scholar
  114. 114.
    Guerri C, Bazinet A, Riley EP. Foetal alcohol spectrum disorders and alterations in brain and behaviour. Alcohol Alcohol. 2009;44(2):108–14.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Kot-Leibovich H, Fainsod A. Ethanol induces embryonic malformations by competing for retinaldehyde dehydrogenase activity during vertebrate gastrulation. Dis Model Mech. 2009;2(5–6):295–305.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Shabtai Y, Jubran H, Nassar T, Hirschberg J, Fainsod A. Kinetic characterization and regulation of the human retinaldehyde dehydrogenase 2 enzyme during production of retinoic acid. Biochem J. 2016;473(10):1423–31.PubMedCrossRefGoogle Scholar
  117. 117.
    Deltour L, Ang HL, Duester G. Ethanol inhibition of retinoic acid synthesis as a potential mechanism for fetal alcohol syndrome. FASEB J. 1996;10(9):1050–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Miranda RC, Santillano DR, Camarillo C, Dohrman D. Modeling the impact of alcohol on cortical development in a dish: strategies from mapping neural stem cell fate. Methods Mol Biol. 2008;447:151–68.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Wilkemeyer MF, Menkari CE, Charness ME. Novel antagonists of alcohol inhibition of l1-mediated cell adhesion: multiple mechanisms of action. Mol Pharmacol. 2002;62(5):1053–60.PubMedCrossRefGoogle Scholar
  120. 120.
    Minana R, Climent E, Barettino D, Segui JM, Renau-Piqueras J, Guerri C. Alcohol exposure alters the expression pattern of neural cell adhesion molecules during brain development. J Neurochem. 2000;75:954–64.PubMedCrossRefGoogle Scholar
  121. 121.
    Guerri C, Montoliu C, Renau-Piqueras J. Involvement of free radical mechanism in the toxic effects of alcohol: implications for fetal alcohol syndrome. Adv Exp Med Biol. 1994;366:291–305.PubMedCrossRefGoogle Scholar
  122. 122.
    Miller L, Shapiro AM, Wells PG. Embryonic catalase protects against ethanol-initiated DNA oxidation and teratogenesis in acatalasemic and transgenic human catalase-expressing mice. Toxicol Sci. 2013;134(2):400–11.PubMedCrossRefGoogle Scholar
  123. 123.
    Guerri C, Pascual M, Renau-Piqueras J. Glia and fetal alcohol syndrome. Neurotoxicology. 2001;22(5):593–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Lombard Z, Tiffin N, Hofmann O, Bajic VB, Hide W, Ramsay M. Computational selection and prioritization of candidate genes for fetal alcohol syndrome. BMC Genomics. 2007;8:389.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Miller MW, Luo J. Effects of ethanol and transforming growth factor beta (TGF beta) on neuronal proliferation and nCAM expression. Alcohol Clin Exp Res. 2002;26(8):1281–5.PubMedGoogle Scholar
  126. 126.
    Krens SF, Spaink HP, Snaar-Jagalska BE. Functions of the MAPK family in vertebrate-development. FEBS Lett. 2006;580(21):4984–90.PubMedCrossRefGoogle Scholar
  127. 127.
    Aroor AR, Shukla SD. MAP kinase signaling in diverse effects of ethanol. Life Sci. 2004;74(19):2339–64.PubMedCrossRefGoogle Scholar
  128. 128.
    Kumada T, Jiang Y, Cameron DB, Komuro H. How does alcohol impair neuronal migration? J Neurosci Res. 2007;85(3):465–70.PubMedCrossRefGoogle Scholar
  129. 129.
    Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15(23):3059–87.PubMedCrossRefGoogle Scholar
  130. 130.
    Chen SY, Periasamy A, Yang B, Herman B, Jacobson K, Sulik KK. Differential sensitivity of mouse neural crest cells to ethanol-induced toxicity. Alcohol. 2000;20(1):75–81.PubMedCrossRefGoogle Scholar
  131. 131.
    Ahlgren SC, Bronner-Fraser M. Inhibition of sonic hedgehog signaling in vivo results in craniofacial neural crest cell death. Curr Biol. 1999;9(22):1304–14.PubMedCrossRefGoogle Scholar
  132. 132.
    Ahlgren SC, Thakur V, Bronner-Fraser M. Sonic hedgehog rescues cranial neural crest from cell death induced by ethanol exposure. Proc Natl Acad Sci U S A. 2002;99(16):10476–81.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13:97–109.PubMedCrossRefGoogle Scholar
  134. 134.
    Haycock PC. Fetal alcohol spectrum disorders: the epigenetic perspective. Biol Reprod. 2009;81:607.PubMedCrossRefGoogle Scholar
  135. 135.
    Kobor MS, Weinberg J. Focus on: epigenetics and fetal alcohol spectrum disorders. Alcohol Res Health. 2011;34(1):29–37.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Liyanage VR, Curtis K, Zachariah RM, Chudley AE, Rastegar M. Overview of the genetic basis and epigenetic mechanisms that contribute to FASD pathobiology. Curr Top Med Chem. 2016;17:808.CrossRefGoogle Scholar
  137. 137.
    Bird A. Perceptions of epigenetics. Nature. 2007;447:396–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.PubMedCrossRefGoogle Scholar
  139. 139.
    Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14:204–20.PubMedCrossRefGoogle Scholar
  140. 140.
    Garro AJ, McBeth DL, Lima V, Lieber CS. Ethanol consumption inhibits fetal DNA methylation in mice: implications for the fetal alcohol syndrome. Alcohol Clin Exp Res. 1991;15(3):395–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Kaminen-Ahola N, Ahola A, Maga M, Mallitt KA, Fahey P, Cox TC, Whitelaw E, Chong S. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet. 2010;6(1):e1000811.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Haycock PC, Ramsay M. Exposure of mouse embryos to ethanol during preimplantation development: effect on DNA methylation in the h19 imprinting control region. Biol Reprod. 2009;81:618–27.PubMedCrossRefGoogle Scholar
  143. 143.
    Stouder C, Somm E, Paoloni-Giacobino A. Prenatal exposure to ethanol: a specific effect on the H19 gene in sperm. Reprod Toxicol. 2011;31:507–12.PubMedCrossRefGoogle Scholar
  144. 144.
    Laufer BI, Kapalanga J, Castellani CA, Diehl EJ, Yan L, Singh SM. Associative DNA methylation changes in children with prenatal alcohol exposure. Epigenomics. 2015;7(8):1259–74.PubMedCrossRefGoogle Scholar
  145. 145.
    Liu Y, Balaraman Y, Wang G, Nephew KP, Zhou FC. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics. 2009;4:500–11.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Portales-Casamar E, Lussier AA, Jones MJ, MacIsaac JL, Edgar RD, Mah SM, et al. DNA methylation signature of human fetal alcohol spectrum disorder. Epigenetics Chromatin. 2016;9:25.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Clarren SK. Central nervous system malformations in two offspring of alcoholic women. Birth Defects-Orig. 1977;13:151–3.Google Scholar
  148. 148.
    Wizniewski K. A clinical neuropathological study of the fetal alcohol syndrome. Neuropediatrics. 1998;14:197–201.CrossRefGoogle Scholar
  149. 149.
    Pfeiffer J, Majewski F, Fischbach H, Bierich JR, Volk B. Alcohol embryo- and fetopathy. J Neurol Sci. 1979;41:125–37.CrossRefGoogle Scholar
  150. 150.
    Guerri C. Neuroanatomical and neurophysiological mechanisms involved in central nervous system dysfunctions induced by prenatal alcohol exposure. Alcohol Clin Exp Res. 1998;22:304–12.PubMedCrossRefGoogle Scholar
  151. 151.
    Mattson SN, Riley EP, Jernigan TL, Ehlers CL, Delis DC, Jones KL, et al. Fetal alcohol syndrome: a case report of neuropsychological, MRI and EEG assessment of two children. Alcohol Clin Exp Res. 1992;16(5):1001–3.PubMedCrossRefGoogle Scholar
  152. 152.
    Swayze VW 2nd, Johnson VP, Hanson JW, Piven J, Sato Y, Giedd JN, Mosnik D, Andreasen NC. Magnetic resonance imaging of brain anomalies in fetal alcohol syndrome. Pediatrics. 1997;99(2):232–40.PubMedCrossRefGoogle Scholar
  153. 153.
    Archibald SL, Fennema-Notestine C, Gamst A, Riley EP, Mattson SN, Jernigan TL. Brain dysmorphology in individuals with severe prenatal alcohol exposure. Dev Med Child Neurol. 2001;43:148–54.PubMedCrossRefGoogle Scholar
  154. 154.
    Sowell ER, Thompson PM, Mattson SN, et al. Regional brain shape abnormalities persist into adolescence after heavy prenatal alcohol exposure. Cereb Cortex. 2002;12:856–65.PubMedCrossRefGoogle Scholar
  155. 155.
    Sowell ER, Thompson PM, Peterson BS, Mattson SN, Welcome SE, Henkenius AL, et al. Mapping cortical gray matter asymmetry patterns in adolescents with heavy prenatal alcohol exposure. NeuroImage. 2002;17(4):1807–19.PubMedCrossRefGoogle Scholar
  156. 156.
    Autti-Rämö I, Autti T, Korkman M, Kettunen S, Salonen O, Valanne L. MRI findings in children with school problems who had been exposed prenatally to alcohol. Dev Med Child Neurol. 2002;44(2):98–106.PubMedCrossRefGoogle Scholar
  157. 157.
    Sowell ER, Thompson PM, Mattson SN, Tessner KD, Jernigan TL, Riley EP, Toga AW. Voxel-based morphometric analyses of the brain in children and adolescents prenatally exposed to alcohol. Neuroreport. 2001;12(3):515–23.PubMedCrossRefGoogle Scholar
  158. 158.
    Sowell ER, Jernigan TL, Mattson SN, Riley EP, Sobel DF, Jones KL. Abnormal development of the cerebellar vermis in children prenatally exposed to alcohol: size reduction in lobules I–V. Alcohol Clin Exp Res. 1996;20(1):31–4.PubMedCrossRefGoogle Scholar
  159. 159.
    O’Hare ED, Kan E, Yoshii J, et al. Mapping cerebellar vermal morphology and cognitive correlates in prenatal alcohol exposure. Neuroreport. 2005;16:1285–90.PubMedCrossRefGoogle Scholar
  160. 160.
    Bookstein FL, Streissguth AP, Connor PD, Sampson PD. Damage to the human cerebellum from prenatal alcohol exposure: the anatomy of a simple biometrical explanation. Anat Rec B New Anat. 2006;289(5):195–209.PubMedCrossRefGoogle Scholar
  161. 161.
    Chen X, Coles CD, Lynch ME, Hu X. Understanding specific effects of prenatal alcohol exposure on brain structure in young adults. Hum Brain Mapp. 2012;33:1663–76.PubMedCrossRefGoogle Scholar
  162. 162.
    Cardenas VA, Price M, Infante MA, Moore EM, Mattson SN, Riley EP, Fein G. Automated cerebellar segmentation: validation and application to detect smaller volumes in children prenatally exposed to alcohol. Neuroimage Clin. 2014;4:295–301.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Sulik KK, Lauder JM, Dehart DB. Brain malformations in prenatal mice following acute maternal ethanol administration. Int J Dev Neurosci. 1984;2(3):203–14.PubMedCrossRefGoogle Scholar
  164. 164.
    Sulik KK. Genesis of alcohol-induced craniofacial dysmorphism. Exp Biol Med (Maywood). 2005;230(6):366–75.CrossRefGoogle Scholar
  165. 165.
    Nathaniel EJ, Nathaniel DR, Mohamed S, Nathaniel L, Kowalzik C, Nahnybida L. Prenatal ethanol exposure and cerebellar development in rats. Exp Neurol. 1986;93(3):601–9.PubMedCrossRefGoogle Scholar
  166. 166.
    Nathaniel EJ, Nathaniel DR, Mohamed SA, Nahnybida L, Nathaniel L. Growth patterns of rat body, brain, and cerebellum in fetal alcohol syndrome. Exp Neurol. 1986;93(3):610–20. tePubMedCrossRefGoogle Scholar
  167. 167.
    Lancaster F, Samorajski T. Prenatal ethanol exposure decreases synaptic density in the molecular layer of the cerebellum. Alcohol Alcohol Suppl. 1987;1:477–80.PubMedGoogle Scholar
  168. 168.
    Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M. Microglia promote the death of developing Purkinje cells. Neuron. 2004;41:535–47.PubMedCrossRefGoogle Scholar
  169. 169.
    Reddien PW, Cameron S, Horvitz HR. Phagocytosis promotes programmed cell death in C. elegans. Nature. 2001;412:198–202.PubMedCrossRefGoogle Scholar
  170. 170.
    Sawant OB, Lunde ER, Washburn SE, Chen WJ, Goodlett CR, Cudd TA. Different patterns of regional Purkinje cell loss in the cerebellar vermis as a function of the timing of prenatal ethanol exposure in an ovine model. Neurotoxicol Teratol. 2013;35:7–13.PubMedCrossRefGoogle Scholar
  171. 171.
    de la Monte SM, Wands JR. Chronic gestational exposure to ethanol impairs insulin-stimulated survival and mitochondrial function in cerebellar neurons. Cell Mol Life Sci. 2002;59(5):882–93.PubMedCrossRefGoogle Scholar
  172. 172.
    de la Monte SM, Wands JR. Role of central nervous system insulin resistance in fetal alcohol spectrum disorders. J Popul Ther Clin Pharmacol. 2010;17(3):e390–404. Epub 2010 Oct 26PubMedPubMedCentralGoogle Scholar
  173. 173.
    de la Monte SM, Tong M, Carlson RI, Carter JJ, Longato L, Silbermann E, Wands JR. Ethanol inhibition of aspartyl-asparaginyl-beta-hydroxylase in fetal alcohol spectrum disorder: potential link to the impairments in central nervous system neuronal migration. Alcohol. 2009;43(3):225–40.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Tong M, Ziplow J, Chen WC, Nguyen QG, Kim C, de la Monte SM. Motor function deficits following chronic prenatal ethanol exposure are linked to impairments in insulin/IGF, notch and Wnt signaling in the cerebellum. J Diabetes Metab. 2013;4(1):238.PubMedPubMedCentralGoogle Scholar
  175. 175.
    Thomas JD, Wasserman EA, West JR, Goodlett CR. Behavioral deficits induced by bingelike exposure to alcohol in neonatal rats: importance of developmental timing and number of episodes. Dev Psychobiol. 1996;29(5):433–52.PubMedCrossRefGoogle Scholar
  176. 176.
    du Plessis L, Jacobson JL, Jacobson SW, Hess AT, van der Kouwe A, Avison MJ, et al. An in vivo 1H magnetic resonance spectroscopy study of the deep cerebellar nuclei in children with fetal alcohol spectrum disorders. Alcohol Clin Exp Res. 2014;38(5):1330–8.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Fan J, Meintjes EM, Molteno CD, Spottiswoode BS, Dodge NC, Alhamud AA, Stanton ME, Peterson BS, Jacobson JL, Jacobson SW. White matter integrity of the cerebellar peduncles as a mediator of effects of prenatal alcohol exposure on eyeblink conditioning. Hum Brain Mapp. 2015;36(7):2470–82.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.PubMedCrossRefGoogle Scholar
  179. 179.
    Steinlin M. The cerebellum in cognitive processes: supporting studies in children. Cerebellum. 2007;6(3):237–41.PubMedCrossRefGoogle Scholar
  180. 180.
    Bloedel JR, Bracha V. Duality of cerebellar motor and cognitive functions. Int Rev Neurobiol. 1997;41:613–34.PubMedCrossRefGoogle Scholar
  181. 181.
    Van Overwalle F, Mariën P. Functional connectivity between the cerebrum and cerebellum in social cognition: a multi-study analysis. NeuroImage. 2016;124(Pt A):248–55.PubMedCrossRefGoogle Scholar
  182. 182.
    Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, et al. Consensus paper: pathological role of the cerebellum in autism. Cerebellum. 2012;11(3):777–807.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Berquin PC, Giedd JN, Jacobsen LK, Hamburger SD, Krain AL, Rapoport JL, Castellanos FX. Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study. Neurology. 1998;50(4):1087–93.PubMedCrossRefGoogle Scholar
  184. 184.
    Ornoy A, Weinstein-Fudim L, Ergaz Z. Genetic syndromes, maternal diseases and antenatal factors associated with autism spectrum disorders (ASD). Front Neurosci. 2016;10:316.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Simmons RW, Nguyen TT, Levy SS, Thomas JD, Mattson SN, Riley EP. Children with heavy prenatal alcohol exposure exhibit deficits when regulating isometric force. Alcohol Clin Exp Res. 2012;36(2):302–9.PubMedCrossRefGoogle Scholar
  186. 186.
    Simmons RW, Thomas JD, Levy SS, Riley EP. Motor response programming and movement time in children with heavy prenatal alcohol exposure. Alcohol. 2010;44(4):371–8.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Chudley AE. Genetic factors in fetal alcohol spectrum disorder. In: Riley E, Clarren S, Weinberg J, Jonsson E, editors. Fetal alcohol syndrome disorder. Management and policy perspectives of FASD. New York: Wiley/Blackwell; 2011. p. 109–26.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departments of Paediatrics and Child Health and Biochemistry and Medical Genetics, Rady College of Medicine, Rady Faculty of Health SciencesUniversity of ManitobaManitobaCanada

Personalised recommendations