Neuroimmune Mechanisms of Cerebellar Development and Its Developmental Disorders: Bidirectional Link Between the Immune System and Nervous System

  • Nour Eissa
  • Laëtitia Kermarrec
  • Jean-Eric GhiaEmail author
Part of the Contemporary Clinical Neuroscience book series (CCNE)


Understanding the cross talk between the immune system and cerebellum development has noticeable implications for understanding and management of neurodevelopmental disorders. Our knowledge about cerebellar developmental maturation and remodeling is improving. Immune cells have different functions in a healthy state, but those functions are compromised during developmental stages in mammals. In this chapter, we highlight the evidence that indicates an important role of the immune system within the cerebellum and brain. We discuss the contribution of different immune responses in the development of the cerebellum and its associated disorders and highlight current understanding of the mechanisms and insights involved in these processes. Immune pathways that have a crucial role in cerebellar development are likely to become therapeutic targets for several neurodevelopmental disorders. Therefore, this information may suggest new therapeutic approaches to developmental disorders of the cerebellum through suppression or activation of selected immune pathways.


Cerebellum Brain Innate immunity Adaptive immunity Cytokines Hypothalamic–pituitary–adrenal 



Anterior inferior cerebellar artery


AIM2-like receptors


Amyotrophic lateral sclerosis


Autonomic nervous system


Antigen-presenting cells


Blood–brain barrier


C-C motif chemokine ligand


Central nervous system


Copolymer 1


Cerebrospinal fluid


Damage-associated molecular patterns


Dendritic cells


Experimental autoimmune encephalomyelitis


External granule cell layer


Forkhead box P3


Glutamic acid decarboxylase antibodies


Gastrointestinal tract


Hashimoto’s encephalopathy


Heat shock proteins


Irritable bowel syndrome






Internal granule cell layer




Laboratory of genetics and physiology 2


Melanoma differentiation-associated gene 5


Major histocompatibility


Macrophage inflammatory protein


Multiple system atrophy


Nod-like receptors




Purinergic receptor P2X7


Primary autoimmune cerebellar ataxia


Pathogen-associated molecular patterns


Posterior inferior cerebellar artery


Pattern recognition receptors


Recombination activating gene


Retinoic acid-inducible gene-1


RIG-like receptors


Retinoic acid-related orphan receptor alpha


Reactive oxygen species


Superior cerebellar artery


Severe combined immunodeficiency




Suppressor of cytokine signaling 3


Tumor growth factor


T helper


Toll-like receptors


Tumor necrosis factor


Regulatory T cells


Upper rhombic lip



This was supported by grants from the Canadian Foundation for Innovation, Crohn’s and Colitis Canada, Research Manitoba, Children’s Hospital Research Institute of Manitoba, Canadian Institutes of Health Research to JEG, and University of Manitoba, Research Manitoba and Health Sciences Foundation – Mindel and Tom Olenick Research Award in Immunology to NE.


  1. 1.
    Glickstein M, Strata P, Voogd J. Cerebellum: history. Neuroscience. 2009;162(3):549–59.PubMedCrossRefGoogle Scholar
  2. 2.
    Dantzer R. Innate immunity at the forefront of psychoneuroimmunology. Brain Behav Immun. 2004;18(1):1–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Jiang C-L, Lu C-L, Liu X-Y. The molecular basis for bidirectional communication between the immune and neuroendocrine systems. Domest Anim Endocrinol. 1998;15(5):363–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Manto MU, Jissendi P. Cerebellum: links between development, developmental disorders and motor learning. The cerebellum: from development to learning. Front Neuroanat. 2007:6;1. doi: 10.3389/fnana.2012.00001.
  5. 5.
    Deverman BE, Patterson PH. Cytokines and CNS development. Neuron. 2009;64(1):61–78.PubMedCrossRefGoogle Scholar
  6. 6.
    Zhu J-N, Zhang Y-P, Song Y-N, Wang J-J. Cerebellar interpositus nuclear and gastric vagal afferent inputs reach and converge onto glycemia-sensitive neurons of the ventromedial hypothalamic nucleus in rats. Neurosci Res. 2004;48(4):405–17.PubMedCrossRefGoogle Scholar
  7. 7.
    Cavdar S, ŞAN T, Aker R, ŞEHİRLİ Ü, Onat F. Cerebellar connections to the dorsomedial and posterior nuclei of the hypothalamus in the rat. J Anat. 2001;198(1):37–45.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Cavdar S, Onat F, Aker R, ŞEHİRLİ Ü, ŞAN T, Raci YH. The afferent connections of the posterior hypothalamic nucleus in the rat using horseradish peroxidase. J Anat. 2001;198(4):463–72.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Wang J, Pu Y, Wang T. Influences of cerebellar interpositus nucleus and fastigial nucleus on neuronal activity of lateral hypothalamic area. Sci China Ser C Life Sci. 1997;40(2):176–83.CrossRefGoogle Scholar
  10. 10.
    Haines D, Dietrichs E. An HRP study of hypothalamo-cerebellar and cerebello-hypothalamic connections in squirrel monkey (saimiri sciureus). J Comp Neurol. 1984;229(4):559–75.PubMedCrossRefGoogle Scholar
  11. 11.
    King JS, Cummings SL, Bishop GA. Peptides in cerebellar circuits. Prog Neurobiol. 1992;39(4):423–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Lind R, Swanson L, Ganten D. Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. Neuroendocrinology. 1985;40(1):2–24.PubMedCrossRefGoogle Scholar
  13. 13.
    Koibuchi N. The role of thyroid hormone on cerebellar development. Cerebellum. 2008;7(4):530–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Koibuchi N, Jingu H, Iwasaki T, Chin WW. Current perspectives on the role of thyroid hormone in growth and development of cerebellum. Cerebellum. 2003;2(4):279.PubMedCrossRefGoogle Scholar
  15. 15.
    Hajo F, Patel A, Bala R. Effect of thyroid deficiency on the synaptic organization of the rat cerebellar cortex. Brain Res. 1973;50(2):387–401.CrossRefGoogle Scholar
  16. 16.
    De Vito P, Incerpi S, Pedersen JZ, Luly P, Davis FB, Davis PJ. Thyroid hormones as modulators of immune activities at the cellular level. Thyroid. 2011;21(8):879–90.PubMedCrossRefGoogle Scholar
  17. 17.
    Janeway CA. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today. 1992;13(1):11–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Kigerl KA, Lai W, Rivest S, Hart RP, Satoskar AR, Popovich PG. Toll-like receptor (TLR)-2 and TLR-4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury. J Neurochem. 2007;102(1):37–50.PubMedCrossRefGoogle Scholar
  19. 19.
    Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J Clin Invest. 2012;122(4):1164–71.PubMedCrossRefGoogle Scholar
  20. 20.
    Colton CA, Wilcock DM. Assessing activation states in microglia. CNS Neurol Disord-Drug Targets (Formerly Curr Drug Targets-CNS Neurol Disord). 2010;9(2):174–91.Google Scholar
  21. 21.
    Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci. 1998;95(2):588–93.PubMedCrossRefGoogle Scholar
  22. 22.
    Yao L, Kan EM, Lu J, Hao A, Dheen ST, Kaur C, et al. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia. J Neuroinflammation. 2013;10(1):23.Google Scholar
  23. 23.
    Basu A, Krady JK, Levison SW. Interleukin-1: a master regulator of neuroinflammation. J Neurosci Res. 2004;78(2):151–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Dinarello CA, Simon A, Van Der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012;11(8):633–52.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Karikó K, Ni H, Capodici J, Lamphier M, Weissman D. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem. 2004;279(13):12542–50.PubMedCrossRefGoogle Scholar
  26. 26.
    DeMarco RA, Fink MP, Lotze MT. Monocytes promote natural killer cell interferon gamma production in response to the endogenous danger signal HMGB1. Mol Immunol. 2005;42(4):433–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock. 2006;26(2):174–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104–7.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8(6):752–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Brudek T, Winge K, Agander TK, Pakkenberg B. Screening of Toll-like receptors expression in multiple system atrophy brains. Neurochem Res. 2013;38(6):1252–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW. Pattern recognition receptors and central nervous system repair. Exp Neurol. 2014;258:5–16.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bsibsi M, Ravid R, Gveric D, van Noort JM. Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol. 2002;61(11):1013–21.PubMedCrossRefGoogle Scholar
  33. 33.
    Okun E, Griffioen KJ, Lathia JD, Tang S-C, Mattson MP, Arumugam TV. Toll-like receptors in neurodegeneration. Brain Res Rev. 2009;59(2):278–92.PubMedCrossRefGoogle Scholar
  34. 34.
    Di Virgilio F. The therapeutic potential of modifying inflammasomes and NOD-like receptors. Pharmacol Rev. 2013;65(3):872–905.PubMedCrossRefGoogle Scholar
  35. 35.
    Martinon F, Burns K, Tschopp J. The Inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell. 2002;10(2):417–26.PubMedCrossRefGoogle Scholar
  36. 36.
    Fernandes-Alnemri T, Wu J, Yu J, Datta P, Miller B, Jankowski W, et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007;14(9):1590–604.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Abulafia DP, de Rivero Vaccari JP, Lozano JD, Lotocki G, Keane RW, Dietrich WD. Inhibition of the inflammasome complex reduces the inflammatory response after thromboembolic stroke in mice. J Cereb Blood Flow Metab. 2009;29(3):534–44.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Minkiewicz J, Rivero Vaccari JP, Keane RW. Human astrocytes express a novel NLRP2 inflammasome. Glia. 2013;61(7):1113–21.PubMedCrossRefGoogle Scholar
  39. 39.
    Shi F, Yang Y, Kouadir M, Fu Y, Yang L, Zhou X, et al. Inhibition of phagocytosis and lysosomal acidification suppresses neurotoxic prion peptide-induced NALP3 inflammasome activation in BV2 microglia. J Neuroimmunol. 2013;260(1):121–5.PubMedCrossRefGoogle Scholar
  40. 40.
    de Rivero Vaccari JP, Lotocki G, Marcillo AE, Dietrich WD, Keane RW. A molecular platform in neurons regulates inflammation after spinal cord injury. J Neurosci. 2008;28(13):3404–14.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Couturier J, Stancu I-C, Schakman O, Pierrot N, Huaux F, Kienlen-Campard P, et al. Activation of phagocytic activity in astrocytes by reduced expression of the inflammasome component ASC and its implication in a mouse model of Alzheimer disease. J Neuroinflammation. 2016;13(1):1–13.CrossRefGoogle Scholar
  42. 42.
    Gustin A, Kirchmeyer M, Koncina E, Felten P, Losciuto S, Heurtaux T, et al. NLRP3 inflammasome is expressed and functional in mouse brain microglia but not in astrocytes. PLoS One. 2015;10(6):e0130624.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Walsh JG, Muruve DA, Power C. Inflammasomes in the CNS. Nat Rev Neurosci. 2014;15(2):84–97.PubMedCrossRefGoogle Scholar
  44. 44.
    Andoh T, Kishi H, Motoki K, Nakanishi K, Kuraishi Y, Muraguchi A. Protective effect of IL-18 on kainate- and IL-1β-induced cerebellar ataxia in mice. J Immunol. 2008;180(4):2322–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Goines PE, Ashwood P. Cytokine dysregulation in autism spectrum disorders (ASD): possible role of the environment. Neurotoxicol Teratol. 2013;36:67–81.PubMedCrossRefGoogle Scholar
  46. 46.
    Savarin C, Bergmann CC. Neuroimmunology of central nervous system viral infections: the cells, molecules and mechanisms involved. Curr Opin Pharmacol. 2008;8(4):472–9.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Szabo A, Bene K, Gogolák P, Réthi B, Lányi Á, Jankovich I, et al. RLR-mediated production of interferon-β by a human dendritic cell subset and its role in virus-specific immunity. J Leukoc Biol. 2012;92(1):159–69.PubMedCrossRefGoogle Scholar
  48. 48.
    Duan X, Ponomareva L, Veeranki S, Panchanathan R, Dickerson E, Choubey D. Differential roles for the interferon-inducible IFI16 and AIM2 innate immune sensors for cytosolic DNA in cellular senescence of human fibroblasts. Mol Cancer Res. 2011;9(5):589–602.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Adamczak SE. Molecular recognition of DNA by the AIM2 inflammasome induces neuronal pyroptosis: implications in infection and host tissue damage. Open Access Dissertations. 2012; 854.Google Scholar
  50. 50.
    Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC. Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia. 2002;40(2):195–205.PubMedCrossRefGoogle Scholar
  51. 51.
    Edele F, Molenaar R, Gütle D, Dudda JC, Jakob T, Homey B, et al. Cutting edge: instructive role of peripheral tissue cells in the imprinting of T cell homing receptor patterns. J Immunol. 2008;181(6):3745–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Desalvo MK, Mayer N, Mayer F, Bainton RJ. Physiologic and anatomic characterization of the brain surface glia barrier of Drosophila. Glia. 2011;59(9):1322–40.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Banerjee S, Bhat MA. Neuron-glial interactions in blood-brain barrier formation. Annu Rev Neurosci. 2007;30:235.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kwidzinski E, Mutlu L, Kovac A, Bunse J, Goldmann J, Mahlo J, et al. Self-tolerance in the immune privileged CNS: lessons from the entorhinal cortex lesion model. Advances in research on neurodegeneration: Austria, Springer; 2003. p. 29–49.Google Scholar
  55. 55.
    Malipiero U, Koedel U, Pfister H-W, Levéen P, Bürki K, Reith W, et al. TGFβ receptor II gene deletion in leucocytes prevents cerebral vasculitis in bacterial meningitis. Brain. 2006;129(9):2404–15.PubMedCrossRefGoogle Scholar
  56. 56.
    Tremblay M-È, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A. The role of microglia in the healthy brain. J Neurosci. 2011;31(45):16064–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Kaur C, Sivakumar V, Zou Z, Ling E-A. Microglia-derived proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1beta induce Purkinje neuronal apoptosis via their receptors in hypoxic neonatal rat brain. Brain Struct Funct. 2014;219(1):151–70.PubMedCrossRefGoogle Scholar
  58. 58.
    Lenz KM, Nugent BM, Haliyur R, McCarthy MM. Microglia are essential to masculinization of brain and behavior. J Neurosci. 2013;33(7):2761–72.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74(4):691–705.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Cuadros MA, Rodriguez-Ruiz J, Calvente R, Almendros A, Marin-Teva JL, Navascues J. Microglia development in the quail cerebellum. J Comp Neurol. 1997;389(3):390–401.PubMedCrossRefGoogle Scholar
  61. 61.
    Perez-Pouchoulen M, VanRyzin JW, McCarthy MM. Morphological and phagocytic profile of microglia in the developing rat cerebellum. ENEURO. 2015;2(4):0036–15. 2015CrossRefGoogle Scholar
  62. 62.
    Marin-Teva JL, Dusart I, Colin C, Gervais A, Van Rooijen N, Mallat M. Microglia promote the death of developing Purkinje cells. Neuron. 2004;41(4):535–47.CrossRefGoogle Scholar
  63. 63.
    Streit WJ. Microglia and macrophages in the developing CNS. Neurotoxicology. 2001;22(5):619–24.PubMedCrossRefGoogle Scholar
  64. 64.
    Schwartz M, Kipnis J, Rivest S, Prat A. How do immune cells support and shape the brain in health, disease, and aging? J Neurosci. 2013;33(45):17587–96.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6(3):173–82.PubMedCrossRefGoogle Scholar
  66. 66.
    Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11(8):519–31.PubMedCrossRefGoogle Scholar
  67. 67.
    Morita K, Miura M, Paolone DR, Engeman TM, Kapoor A, Remick DG, et al. Early chemokine cascades in murine cardiac grafts regulate T cell recruitment and progression of acute allograft rejection. J Immunol. 2001;167(5):2979–84.PubMedCrossRefGoogle Scholar
  68. 68.
    Halloran P, Fairchild R. The puzzling role of CXCR3 and its ligands in organ allograft rejection. Am J Transplant. 2008;8(8):1578–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Klein RS, Rubin JB, Gibson HD, DeHaan EN, Alvarez-Hernandez X, Segal RA, et al. SDF-1α induces chemotaxis and enhances Sonic hedgehog-induced proliferation of cerebellar granule cells. Development. 2001;128(11):1971–81.PubMedGoogle Scholar
  70. 70.
    Stumm RK, Rummel J, Junker V, Culmsee C, Pfeiffer M, Krieglstein J, et al. A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain: isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia. J Neurosci. 2002;22(14):5865–78.PubMedCrossRefGoogle Scholar
  71. 71.
    Rostène W, Dansereau MA, Godefroy D, Van Steenwinckel J, Goazigo ARL, Mélik-Parsadaniantz S, et al. Neurochemokines: a menage a trois providing new insights on the functions of chemokines in the central nervous system. J Neurochem. 2011;118(5):680–94.PubMedCrossRefGoogle Scholar
  72. 72.
    Wingate RJ. The rhombic lip and early cerebellar development. Curr Opin Neurobiol. 2001;11(1):82–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Zhu Y, Yu T, Zhang X-C, Nagasawa T, Wu JY, Rao Y. Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons. Nat Neurosci. 2002;5(8):719–20.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Ozawa PMM, Ariza CB, Ishibashi CM, Fujita TC, Banin-Hirata BK, Oda JMM, et al. Role of CXCL12 and CXCR4 in normal cerebellar development and medulloblastoma. Int J Cancer. 2016;138(1):10–3.PubMedCrossRefGoogle Scholar
  75. 75.
    Daré E, Schulte G, Karovic O, Hammarberg C, Fredholm BB. Modulation of glial cell functions by adenosine receptors. Physiol Behav. 2007;92(1):15–20.PubMedCrossRefGoogle Scholar
  76. 76.
    Lécuyer M-A, Kebir H, Prat A. Glial influences on BBB functions and molecular players in immune cell trafficking. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis. 2016;1862(3):472–82.CrossRefGoogle Scholar
  77. 77.
    Abbott NJ. Astrocyte–endothelial interactions and blood–brain barrier permeability. J Anat. 2002;200(5):523–34.CrossRefGoogle Scholar
  78. 78.
    Wu F, Zou Q, Ding X, Shi D, Zhu X, Hu W, et al. Complement component C3a plays a critical role in endothelial activation and leukocyte recruitment into the brain. J Neuroinflammation. 2016;13(1):1–14.CrossRefGoogle Scholar
  79. 79.
    Hindinger C, Bergmann CC, Hinton DR, Phares TW, Parra GI, Hussain S, et al. IFN-γ signaling to astrocytes protects from autoimmune mediated neurological disability. PLoS One. 2012;7(7):e42088.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Jehs T, Faber C, Juel HB, Nissen MH. Astrocytoma cells upregulate expression of pro-inflammatory cytokines after co-culture with activated peripheral blood mononuclear cells. APMIS. 2011;119(8):551–61.PubMedCrossRefGoogle Scholar
  81. 81.
    Yang J, Tao H, Liu Y, Zhan X, Liu Y, Wang X, et al. Characterization of the interaction between astrocytes and encephalitogenic lymphocytes during the development of experimental autoimmune encephalitomyelitis (EAE) in mice. Clin Exp Immunol. 2012;170(3):254–65.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol. 2007;171(3):715–27.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Brennan FH, Anderson AJ, Taylor SM, Woodruff TM, Ruitenberg MJ. Complement activation in the injured central nervous system: another dual-edged sword? J Neuroinflammation. 2012;9(1):1.CrossRefGoogle Scholar
  84. 84.
    Veerhuis R, Nielsen HM, Tenner AJ. Complement in the brain. Mol Immunol. 2011;48(14):1592–603.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Davoust N, Jones J, Stahel PF, Ames RS, Barnum SR. Receptor for the C3a anaphylatoxin is expressed by neurons and glial cells. Glia. 1999;26(3):201–11.PubMedCrossRefGoogle Scholar
  86. 86.
    Arumugam TV, Woodruff TM, Lathia JD, Selvaraj PK, Mattson MP, Taylor SM. Neuroprotection in stroke by complement inhibition and immunoglobulin therapy. Neuroscience. 2009;158(3):1074–89.PubMedCrossRefGoogle Scholar
  87. 87.
    Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131(6):1164–78.PubMedCrossRefGoogle Scholar
  88. 88.
    Perry VH, O’connor V. C1q: the perfect complement for a synaptic feast? Nat Rev Neurosci. 2008;9(11):807–11.PubMedCrossRefGoogle Scholar
  89. 89.
    Shatz CJ. MHC class I: an unexpected role in neuronal plasticity. Neuron. 2009;64(1):40–5.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Hua Y, Xi G, Keep RF, Hoff JT. Complement activation in the brain after experimental intracerebral hemorrhage. J Neurosurg. 2000;92(6):1016–22.PubMedCrossRefGoogle Scholar
  91. 91.
    Ghoshal D, Sinha S, Sinha A, Bhattacharyya P. Immunosuppressive effect of vestibulo-cerebellar lesion in rats. Neurosci Lett. 1998;257(2):89–92.PubMedCrossRefGoogle Scholar
  92. 92.
    Peng Y-P, Qiu Y-H, Chao B-B, Wang J-J. Effect of lesions of cerebellar fastigial nuclei on lymphocyte functions of rats. Neurosci Res. 2005;51(3):275–84.PubMedCrossRefGoogle Scholar
  93. 93.
    Ellwardt E, Walsh JT, Kipnis J, Zipp F. Understanding the role of T cells in CNS homeostasis. Trends Immunol. 2016;37(2):154–65.PubMedCrossRefGoogle Scholar
  94. 94.
    Kipnis J, Yoles E, Porat Z, Cohen A, Mor F, Sela M, et al. T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci. 2000;97(13):7446–51.PubMedCrossRefGoogle Scholar
  95. 95.
    Xie L, Choudhury GR, Winters A, Yang SH, Jin K. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. Eur J Immunol. 2015;45(1):180–91.PubMedCrossRefGoogle Scholar
  96. 96.
    Luchtman DW, Ellwardt E, Larochelle C, Zipp F. IL-17 and related cytokines involved in the pathology and immunotherapy of multiple sclerosis: current and future developments. Cytokine Growth Factor Rev. 2014;25(4):403–13.PubMedCrossRefGoogle Scholar
  97. 97.
    Liblau RS, Gonzalez-Dunia D, Wiendl H, Zipp F. Neurons as targets for T cells in the nervous system. Trends Neurosci. 2013;36(6):315–24.PubMedCrossRefGoogle Scholar
  98. 98.
    Ahmad SF, Zoheir KM, Ansari MA, Nadeem A, Bakheet SA, AL-Ayadhi LY, et al. Dysregulation of Th1, Th2, Th17, and T regulatory cell-related transcription factor signaling in children with autism. doi: 10.1007/s12035-016-9977-0. Mol Neurobiol. 2016:1–11.PubMedCrossRefGoogle Scholar
  99. 99.
    Campbell SJ, Wilcockson DC, Butchart AG, Perry VH, Anthony DC. Altered chemokine expression in the spinal cord and brain contributes to differential interleukin-1beta-induced neutrophil recruitment. J Neurochem. 2002;83:432–41.PubMedCrossRefGoogle Scholar
  100. 100.
    Estes ML, McAllister AK. Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci. 2015;16(8):469–86.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Hill KE, Clawson SA, Rose JW, Carlson NG, Greenlee JE. Cerebellar Purkinje cells incorporate immunoglobulins and immunotoxins in vitro: implications for human neurological disease and immunotherapeutics. J Neuroinflammation. 2009;6(1):1–12.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Dalmau J, Rosenfeld MR. Paraneoplastic syndromes of the CNS. Lancet Neurol. 2008;7(4):327–40.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Chen S, Su H-S. Selective labeling by propidium iodide injected into the lateral cerebral ventricle of the rat. Brain Res. 1989;483(2):379–83.PubMedCrossRefGoogle Scholar
  104. 104.
    Saini V, Weisz A, Hoffman J. Paraneoplastic Cerebellar Degeneration (PCD) Syndrome in Diffuse Large B-cell Lymphoma (DLBCL): expanding the spectrum of malignancies associated with cerebellar degeneration (P5. 260). Neurology. 2016;86(16 Supplement):P5–260.Google Scholar
  105. 105.
    Mitoma H, Hadjivassiliou M, Honnorat J. Guidelines for treatment of immune-mediated cerebellar ataxias. Cerebellum Ataxias. 2015;2:14.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Jarius S, Wildemann B. ‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 1: anti-mGluR1, anti-Homer-3, anti-Sj/ITPR1 and anti-CARP VIII. J Neuroinflammation. 2015;12(1):1.Google Scholar
  107. 107.
    Hadjivassiliou M. Chapter 11 – immune-mediated acquired ataxias. In: Sankara HS, Alexandra D, editors. Handbook of clinical neurology. Vol. 103. Elsevier; 2012. p. 189–99.Google Scholar
  108. 108.
    Cooke W, Smith WT. Neurological disorders associated with adult celiac disease. United States. Brain. 1966;89(4):683–722.PubMedCrossRefGoogle Scholar
  109. 109.
    Wiendl H, Mehling M, Dichgans J, Melms A, Bürk K. The humoral response in the pathogenesis of gluten ataxia. Neurology. 2003;60(8):1397–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Vojdani A, O’Bryan T, Green J, McCandless J, Woeller K, Vojdani E, et al. Immune response to dietary proteins, gliadin and cerebellar peptides in children with autism. Nutr Neurosci. 2004;7(3):151–61.PubMedCrossRefGoogle Scholar
  111. 111.
    Boscolo S, Sarich A, Lorenzon A, Passoni M, Rui V, Stebel M, et al. Gluten ataxia. Ann N Y Acad Sci. 2007;1107(1):319–28.PubMedCrossRefGoogle Scholar
  112. 112.
    Sanger GJ, Lee K. Hormones of the gut–brain axis as targets for the treatment of upper gastrointestinal disorders. Nat Rev Drug Discov. 2008;7(3):241–54.PubMedCrossRefGoogle Scholar
  113. 113.
    Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci. 2011;108(7):3047–52.CrossRefGoogle Scholar
  114. 114.
    Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489(7415):231–41.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Li Q, Zhou J-M. The microbiota–gut–brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience. 2016;324:131–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Korponay-Szabó IR, Halttunen T, Szalai Z, Laurila K, Kiraly R, Kovacs J, et al. In vivo targeting of intestinal and extraintestinal transglutaminase 2 by coeliac autoantibodies. Gut. 2004;53(5):641–8.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Hadjivassiliou M, Mäki M, Sanders D, Williamson C, Grünewald R, Woodroofe N, et al. Autoantibody targeting of brain and intestinal transglutaminase in gluten ataxia. Neurology. 2006;66(3):373–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nour Eissa
    • 1
    • 2
  • Laëtitia Kermarrec
    • 1
  • Jean-Eric Ghia
    • 1
    • 3
    • 4
    • 2
    • 5
    Email author
  1. 1.ImmunologyUniversity of ManitobaWinnipegCanada
  2. 2.Children’s Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegCanada
  3. 3.Internal Medicine, Section of GastroenterologyUniversity of ManitobaWinnipegCanada
  4. 4.IBD Clinical and Research CentreUniversity of ManitobaWinnipegCanada
  5. 5.Department of Immunology, College of MedicineUniversity of ManitobaWinnipegCanada

Personalised recommendations