Advertisement

Epigenetics and Cerebellar Neurodevelopmental Disorders

  • Mojgan RastegarEmail author
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Epigenetic mechanisms regulate cellular identity and organ morphology via controlling the gene expression program of specific cell types. Such mechanisms are not directly controlled by genomic DNA sequences and can be largely influenced by environmental factors. Epigenetic mechanisms include modification of DNA and DNA-bound proteins (histones), action of large and short regulatory RNA molecules, cross talk between DNA and histone marks, nucleosome positioning, chromatin removdeling, enhancer-promoter interactions, as well as three-dimensional chromatin structure that is in part controlled by global regulators and insulator proteins. Research on epigenetic mechanisms is an emerging hot topic today that may very well be due to the potential reversibility of epigenetic marks. Such characteristics of epigenetic modifications have brought them into the front row of research for cutting-edge therapeutic strategies. The challenge would be of course the very large number of genes that will be targeted by most epigenetic drugs that are capable of global modulation of epigenetic marks and a purposeful management of selectively targeting disease-associated genes in balance with global effects of these drugs.

Like all parts of our body, development of the central nervous system and the brain is regulated through epigenetic mechanisms. It is not of surprise that deregulation of epigenetic modifications may lead to human disease and neurodevelopmental disorders. In this book chapter, I will focus on main epigenetic mechanisms that control the brain and cerebellum development. I will then discuss some of the common neurodevelopmental disorders that have proven epigenetic components that provide important insight toward the future research on epigenetics and cerebellar neurodevelopmental disorders.

Notes

Acknowledgment

I would like to acknowledge many other excellent research publications that are not discussed in this book chapter due to the space limitation. I would like to thank Jeff Dixon for the artwork in all figures of this book chapter. This work is supported by funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (2016-06035) and the Canadian Institute of Health Research (CIHR) Team Grant (TEC-128094). The research in my lab is supported by NSERC DG-2016-06035, CIHR-TEC-128094, International Rett Syndrome Foundation (IRSF) Basic Research Grant Award #3212, Ontario Rett Syndrome Association (ORSA), and the Children’s Research Institute of Manitoba (CHRIM). The CIHR Catalyst Grant CEN-132383 supported part of the highlighted published research from my lab on sections about Mecp2/MeCP2 regulation.

References

  1. 1.
    Flemming WZ. Kern und Zelltheilung. Leipzig: Verlag Vogel; 1882.Google Scholar
  2. 2.
    Watson JD, Crick FH. The structure of DNA. Cold Spring Harb Symp Quant Biol. 1953;18:123–31.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    CD W. Characterization of development and the inheritance of acquired characters. Nature. 1942;3811:563–4.Google Scholar
  4. 4.
    Olynik BM, Rastegar M. The genetic and epigenetic journey of embryonic stem cells into mature neural cells. Front Genet. 2012;3:81.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Delcuve GP, Rastegar M, Davie JR. Epigenetic control. J Cell Physiol. 2009;219:243–50.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Gold M, Hurwitz J, Anders M. The enzymatic methylation of RNA and DNA. Biochem Biophys Res Commun. 1963;11:107–14.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Razin A, Cedar H. Distribution of 5-methylcytosine in chromatin. Proc Natl Acad Sci U S A. 1977;74:2725–8.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Liyanage VRB, Zachariah RM, Delcuve GP, Davie JR, Rastegar M. Chromatin structure and epigenetics. In: Urbano KV, editor. Advances in genetics research. New York: Nova Science Publishers; 2015. p. 57–88.Google Scholar
  9. 9.
    Beck S, Rakyan VK. The methylome: approaches for global DNA methylation profiling. Trends Genet TIG. 2008;24:231–7.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ibrahim MA. An insight into the use of genome, Methylome and Gethylome in synthetic biology. Asian J Appl Sci. 2012;5:67–73.CrossRefGoogle Scholar
  11. 11.
    Liyanage VR, Jarmasz JS, Murugeshan N, Del Bigio MR, Rastegar M, Davie JR. DNA modifications: function and applications in normal and disease states. Biology. 2014;3:670–723.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Barber BA, Rastegar M. Epigenetic control of Hox genes during neurogenesis, development, and disease. Ann Anat Anat Anz Off Organ Anat Ges. 2010;192:261–74.CrossRefGoogle Scholar
  13. 13.
    Liyanage VRB, Zachariah RM, Delcuve GP, Davie JR, Rastegar M. New developments in chromatin research: an epigenetic perspective. In: Simpson NM, Stewart VJ, editors. New developments in chromatin research. New York: Nova Science Publishers; 2012. p. 29–58.Google Scholar
  14. 14.
    Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B, Zhong C, Hu S, Le T, Fan G, Zhu H, Chang Q, Gao Y, Ming GL, Song H. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci. 2014;17:215–22.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324:929–30.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Munzel M, Globisch D, Carell T. 5-Hydroxymethylcytosine, the sixth base of the genome. Angew Chem. 2011;50:6460–8.CrossRefGoogle Scholar
  18. 18.
    Munzel M, Globisch D, Bruckl T, Wagner M, Welzmiller V, Michalakis S, Muller M, Biel M, Carell T. Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew Chem. 2010;49:5375–7.CrossRefGoogle Scholar
  19. 19.
    Wu H, D’Alessio AC, Ito S, Wang Z, Cui K, Zhao K, Sun YE, Zhang Y. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev. 2011;25:679–84.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–3.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Delcuve GP, Rastegar M, Davie JR. Epigenetic analysis of pluripotent cells. In: Stein GS, Borowski M, Luong MX, Shi M-J, Smith KP, Vazquez P, editors. In human stem cell technology and biology: a research guide and laboratory manual. Perspectives in human stem cell technologies. 1st ed. New Jersey: Wiley-Blackwell; 2011. p. 273–88.Google Scholar
  22. 22.
    Chen T, Li E. Establishment and maintenance of DNA methylation patterns in mammals. Curr Top Microbiol Immunol. 2006;301:179–201.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Jurkowska RZ, Jurkowski TP, Jeltsch A. Structure and function of mammalian DNA methyltransferases. Chembiochem: A Eur J Chem Biol. 2011;12:206–22.CrossRefGoogle Scholar
  24. 24.
    Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992;69:915–26.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Hata K, Okano M, Lei H, Li E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development. 2002;129:1983–93.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Klein CJ, Botuyan MV, Wu Y, Ward CJ, Nicholson GA, Hammans S, Hojo K, Yamanishi H, Karpf AR, Wallace DC, Simon M, Lander C, Boardman LA, Cunningham JM, Smith GE, Litchy WJ, Boes B, Atkinson EJ, Middha S, B Dyck PJ, Parisi JE, Mer G, Smith DI, Dyck PJ. Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat Genet. 2011;43:595–600.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Winkelmann J, Lin L, Schormair B, Kornum BR, Faraco J, Plazzi G, Melberg A, Cornelio F, Urban AE, Pizza F, Poli F, Grubert F, Wieland T, Graf E, Hallmayer J, Strom TM, Mignot E. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet. 2012;21:2205–10.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Tatton-Brown K, Seal S, Ruark E, Harmer J, Ramsay E, Del Vecchio Duarte S, Zachariou A, Hanks S, O’Brien E, Aksglaede L, Baralle D, Dabir T, Gener B, Goudie D, Homfray T, Kumar A, Pilz DT, Selicorni A, Temple IK, Van Maldergem L, Yachelevich N, Childhood Overgrowth C, van Montfort R, Rahman N. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nat Genet. 2014;46:385–8.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Weemaes CM, van Tol MJ, Wang J, van Ostaijen-ten Dam MM, van Eggermond MC, Thijssen PE, Aytekin C, Brunetti-Pierri N, van der Burg M, Graham Davies E, Ferster A, Furthner D, Gimelli G, Gennery A, Kloeckener-Gruissem B, Meyn S, Powell C, Reisli I, Schuetz C, Schulz A, Shugar A, van den Elsen PJ, van der Maarel SM. Heterogeneous clinical presentation in ICF syndrome: correlation with underlying gene defects. Eur J Hum Gen EJHG. 2013;21:1219–25.CrossRefGoogle Scholar
  31. 31.
    Meehan RR, Lewis JD, Bird AP. Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res. 1992;20:5085–92.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Zachariah RM, Rastegar M. Linking epigenetics to human disease and Rett syndrome: the emerging novel and challenging concepts in MeCP2 research. Neural Plast. 2012;2012:10.CrossRefGoogle Scholar
  33. 33.
    Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet. 2002;3:662–73.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Skene PJ, Illingworth RS, Webb S, Kerr AR, James KD, Turner DJ, Andrews R, Bird AP. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell. 2010;37:457–68.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ghosh RP, Horowitz-Scherer RA, Nikitina T, Shlyakhtenko LS, Woodcock CL. MeCP2 binds cooperatively to its substrate and competes with histone H1 for chromatin binding sites. Mol Cell Biol. 2010;30:4656–70.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Cohen S, Zhou Z, Greenberg ME. Medicine activating a repressor. Science. 2008;320:1172–3.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Sun YE, Wu H. The ups and downs of BDNF in Rett syndrome. Neuron. 2006;49:321–3.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Larimore JL, Chapleau CA, Kudo S, Theibert A, Percy AK, Pozzo-Miller L. Bdnf overexpression in hippocampal neurons prevents dendritic atrophy caused by Rett-associated MECP2 mutations. Neurobiol Dis. 2009;34:199–211.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Mellen M, Ayata P, Dewell S, Kriaucionis S, Heintz N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell. 2012;151:1417–30.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science. 2008;320:1224–9.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Mnatzakanian GN, Lohi H, Munteanu I, Alfred SE, Yamada T, MacLeod PJ, Jones JR, Scherer SW, Schanen NC, Friez MJ, Vincent JB, Minassian BA. A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome. Nat Genet. 2004;36:339–41.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Dragich JM, Kim YH, Arnold AP, Schanen NC. Differential distribution of the MeCP2 splice variants in the postnatal mouse brain. J Comp Neurol. 2007;501:526–42.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Zachariah RM, Olson CO, Ezeonwuka C, Rastegar M. Novel MeCP2 isoform-specific antibody reveals the endogenous MeCP2E1 expression in murine brain, primary neurons and astrocytes. PLoS One. 2012;7:e49763.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Olson CO, Zachariah RM, Ezeonwuka CD, Liyanage VR, Rastegar M. Brain region-specific expression of MeCP2 isoforms correlates with DNA methylation within Mecp2 regulatory elements. PLoS One. 2014;9:e90645.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Liyanage VR, Zachariah RM, Davie JR, Rastegar M. Ethanol deregulates Mecp2/MeCP2 in differentiating neural stem cells via interplay between 5-methylcytosine and 5-hydroxymethylcytosine at the Mecp2 regulatory elements. Exp Neurol. 2015;265C:102–17.CrossRefGoogle Scholar
  46. 46.
    Liyanage VR, Zachariah RM, Rastegar M. Decitabine alters the expression of Mecp2 isoforms via dynamic DNA methylation at the Mecp2 regulatory elements in neural stem cells. Mol Autism. 2013;4:46.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X, Jin SG, Iqbal K, Shi YG, Deng Z, Szabo PE, Pfeifer GP, Li J, Xu GL. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 2011;477:606–10.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Ko M, Bandukwala HS, An J, Lamperti ED, Thompson EC, Hastie R, Tsangaratou A, Rajewsky K, Koralov SB, Rao A. Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc Natl Acad Sci U S A. 2011;108:14566–71.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Li Z, Cai X, Cai CL, Wang J, Zhang W, Petersen BE, Yang FC, Xu M. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood. 2011;118:4509–18.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Dawlaty MM, Ganz K, Powell BE, Hu YC, Markoulaki S, Cheng AW, Gao Q, Kim J, Choi SW, Page DC, Jaenisch R. Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell. 2011;9:166–75.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Stroud H, Feng S, Morey Kinney S, Pradhan S, Jacobsen SE. 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol. 2011;12:R54.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Wu H, Zhang Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell. 2014;156:45–68.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W. Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev. 2002;12:162–9.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of Rna synthesis. Proc Natl Acad Sci U S A. 1964;51:786–94.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Rastegar M, Kobrossy L, Kovacs EN, Rambaldi I, Featherstone M. Sequential histone modifications at Hoxd4 regulatory regions distinguish anterior from posterior embryonic compartments. Mol Cell Biol. 2004;24:8090–103.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Kobrossy L, Rastegar M, Featherstone M. Interplay between chromatin and trans-acting factors regulating the Hoxd4 promoter during neural differentiation. J Biol Chem. 2006;281:25926–39.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Nolte C, Rastegar M, Amores A, Bouchard M, Grote D, Maas R, Kovacs EN, Postlethwait J, Rambaldi I, Rowan S, Yan YL, Zhang F, Featherstone M. Stereospecificity and PAX6 function direct Hoxd4 neural enhancer activity along the antero-posterior axis. Dev Biol. 2006;299:582–93.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125:315–26.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Barber BA, Liyanage VR, Zachariah RM, Olson CO, Bailey MA, Rastegar M. Dynamic expression of MEIS1 homeoprotein in E14.5 forebrain and differentiated forebrain-derived neural stem cells. Ann Anat Anat Anz Off Organ Anat Ges. 2013;195:431–40.CrossRefGoogle Scholar
  60. 60.
    Huang H, Rastegar M, Bodner C, Goh SL, Rambaldi I, Featherstone M. MEIS C termini harbor transcriptional activation domains that respond to cell signaling. J Biol Chem. 2005;280:10119–27.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Marzban H, Del Bigio MR, Alizadeh J, Ghavami S, Zachariah RM, Rastegar M. Cellular commitment in the developing cerebellum. Front Cell Neurosci. 2015. 2015;8:1–26.CrossRefGoogle Scholar
  62. 62.
    Nirgudkar P, Taylor DH, Yanagawa Y, Valenzuela CF. Ethanol exposure during development reduces GABAergic/glycinergic neuron numbers and lobule volumes in the mouse cerebellar vermis. Neurosci Lett. 2016;632:86–91.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Hoang M, Kim JJ, Kim Y, Tong E, Trammell B, Liu Y, Shi S, Lee CR, Hong C, Wang CY, Kim Y. Alcohol-induced suppression of KDM6B dysregulates the mineralization potential in dental pulp stem cells. Stem Cell Res. 2016;17:111–21.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Portales-Casamar E, Lussier AA, Jones MJ, MacIsaac JL, Edgar RD, Mah SM, Barhdadi A, Provost S, Lemieux-Perreault LP, Cynader MS, Chudley AE, Dube MP, Reynolds JN, Pavlidis P, Kobor MS. DNA methylation signature of human fetal alcohol spectrum disorder. Epigenetics Chromatin. 2016;9:25.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Khalid O, Kim JJ, Kim HS, Hoang M, Tu TG, Elie O, Lee C, Vu C, Horvath S, Spigelman I, Kim Y. Gene expression signatures affected by alcohol-induced DNA methylomic deregulation in human embryonic stem cells. Stem Cell Res. 2014;12:791–806.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Liyanage VR, Curtis K, Zachariah RM, Chudley AE, Rastegar M. Overview of the genetic basis and epigenetic mechanisms that contribute to FASD pathobiology. Curr Top Med Chem. 2017;17:808–28.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Zhubi A, Chen Y, Dong E, Cook EH, Guidotti A, Grayson DR. Increased binding of MeCP2 to the GAD1 and RELN promoters may be mediated by an enrichment of 5-hmC in autism spectrum disorder (ASD) cerebellum. Transl Psychiatry. 2014;4:e349.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Blatt GJ, Fatemi SH. Alterations in GABAergic biomarkers in the autism brain: research findings and clinical implications. Anat Rec. 2011;294:1646–52.CrossRefGoogle Scholar
  69. 69.
    Pesold C, Impagnatiello F, Pisu MG, Uzunov DP, Costa E, Guidotti A, Caruncho HJ. Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proc Natl Acad Sci U S A. 1998;95:3221–6.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Ciernia AV, LaSalle J. The landscape of DNA methylation amid a perfect storm of autism aetiologies. Nat Rev Neurosci. 2016;17:411–23.CrossRefGoogle Scholar
  71. 71.
    Schroeder DI, Schmidt RJ, Crary-Dooley FK, Walker CK, Ozonoff S, Tancredi DJ, Hertz-Picciotto I, LaSalle JM. Placental methylome analysis from a prospective autism study. Mol Autism. 2016;7:51.Google Scholar
  72. 72.
    Nagy C., Torres-Platas SG., Mechawar N., Turecki G. Repression of astrocytic connexins in cortical and subcortical brain regions and prefrontal enrichment of H3K9me3 in depression and suicide. Int J Neuropsychopharmacol. 2017;20(1):50–57.Google Scholar
  73. 73.
    Lu AT, Hannon E, Levine ME, Hao K, Crimmins EM, Lunnon K, Kozlenkov A, Mill J, Dracheva S, Horvath S. Genetic variants near MLST8 and DHX57 affect the epigenetic age of the cerebellum. Nat Commun. 2016;7:10561.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Jiang D, Zhang Y, Hart RP, Chen J, Herrup K, Li J. Alteration in 5-hydroxymethylcytosine-mediated epigenetic regulation leads to Purkinje cell vulnerability in ATM deficiency. Brain J Neurol. 2015;138:3520–36.CrossRefGoogle Scholar
  75. 75.
    Nagarajan RP, Hogart AR, Gwye Y, Martin MR, LaSalle JM. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics. 2006;1:e1–11.CrossRefGoogle Scholar
  76. 76.
    Kankirawatana P, Leonard H, Ellaway C, Scurlock J, Mansour A, Makris CM, Dure LSt, Friez M, Lane J, Kiraly-Borri C, Fabian V, Davis M, Jackson J, Christodoulou J, Kaufmann WE, Ravine D, Percy AK. Early progressive encephalopathy in boys and MECP2 mutations. Neurology. 2006;67:164–6.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Percy AK, Lane JB. Rett syndrome: model of neurodevelopmental disorders. J Child Neurol. 2005;20:718–21.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Amir RE, Sutton VR, Van den Veyver IB. Newborn screening and prenatal diagnosis for Rett syndrome: implications for therapy. J Child Neurol. 2005;20:779–83.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Gonzales ML, LaSalle JM. The role of MeCP2 in brain development and neurodevelopmental disorders. Curr Psychiatry Rep. 12:127–34.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Nagarajan RP, Patzel KA, Martin M, Yasui DH, Swanberg SE, Hertz-Picciotto I, Hansen RL, Van de Water J, Pessah IN, Jiang R, Robinson WP, LaSalle JM. MECP2 promoter methylation and X chromosome inactivation in autism. Autism Res. 2008;1:169–78.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Giacometti E, Luikenhuis S, Beard C, Jaenisch R. Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2. Proc Natl Acad Sci U S A. 2007;104:1931–6.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Guy J, Gan J, Selfridge J, Cobb S, Bird A. Reversal of neurological defects in a mouse model of Rett syndrome. Science. 2007;315:1143–7.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Yasui DH, Gonzales ML, Aflatooni JO, Crary FK, Hu DJ, Gavino BJ, Golub MS, Vincent JB, Carolyn Schanen N, Olson CO, Rastegar M, Lasalle JM. Mice with an isoform-ablating Mecp2 exon 1 mutation recapitulate the neurologic deficits of Rett syndrome. Hum Mol Genet. 2014;23:2447–58.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Rastegar M, Hotta A, Pasceri P, Makarem M, Cheung AY, Elliott S, Park KJ, Adachi M, Jones FS, Clarke ID, Dirks P, Ellis J. MECP2 isoform-specific vectors with regulated expression for Rett syndrome gene therapy. PLoS One. 2009;4:e6810.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Ellis J, Hotta A, Rastegar M. Retrovirus silencing by an epigenetic TRIM. Cell. 2007;131:13–4.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Kerr B, Soto CJ, Saez M, Abrams A, Walz K, Young JI. Transgenic complementation of MeCP2 deficiency: phenotypic rescue of Mecp2-null mice by isoform-specific transgenes. Eur J Hum Genet EJHG. 2012;20:69–76.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Regenerative Medicine Program, and Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of ManitobaWinnipegCanada

Personalised recommendations