Optimally-Self-Healing Distributed Gradient Structures Through Bounded Information Speed

  • Giorgio AudritoEmail author
  • Ferruccio Damiani
  • Mirko Viroli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10319)


With the constant increase in the number of interconnected devices in today networks, more and more computations can be described by spatial computing abstractions. In this context, distances can be estimated in a fully-distributed way by the so-called gradient self-organisation pattern: it is a basic building block also for large-scale system coordination, frequently used to broadcast information, forecast pointwise events, as carrier for distributed sensing, and as combinator for higher-level spatial structures. However, computing gradients is very problematic in a mutable environment: existing algorithms fail in reaching adequate trade offs between accuracy and reaction speed to environment changes.

In this paper we introduce a new gradient algorithm, BIS (Bounded Information Speed) gradient, which uses time information to achieve a smooth and predictable reaction speed, which is proved optimal for algorithms following a single-path-communication strategy. Following a proposed methodology for empirical evaluation of performance of spatial computing algorithms, we evaluate BIS gradient and compare it with other approaches. We show that BIS achieves the best accuracy while keeping smoothness under control.


Aggregate programming Gradient Information speed Reliability Spatial computing 



We thank the anonymous COORDINATION referees for their comments and suggestions on improving the presentation.


  1. 1.
    Aldinucci, M., Bagnasco, S., Lusso, S., Pasteris, P., Vallero, S., Rabellino, S.: The open computing cluster for advanced data manipulation (OCCAM). In: The 22nd International Conference on Computing in High Energy and Nuclear Physics (CHEP), San Francisco, USA (2016)Google Scholar
  2. 2.
    Bachrach, J., Beal, J., McLurkin, J.: Composable continuous space programs for robotic swarms. Neural Comput. Appl. 19(6), 825–847 (2010)CrossRefGoogle Scholar
  3. 3.
    Beal, J.: Flexible self-healing gradients. In: Proceedings of the 2009 ACM Symposium on Applied Computing, SAC 2009, pp. 1197–1201. ACM (2009)Google Scholar
  4. 4.
    Beal, J., Bachrach, J., Vickery, D., Tobenkin, M.: Fast self-healing gradients. In: Proceedings of ACM SAC 2008, pp. 1969–1975. ACM (2008)Google Scholar
  5. 5.
    Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate: languages for spatial computing. In: Mernik, M. (ed.) Formal and Practical Aspects of Domain-Specific Languages: Recent Developments, Chap. 16, pp. 436–501. IGI Global (2013).
  6. 6.
    Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the Internet of Things. IEEE Computer 48(9), 22–30 (2015)CrossRefGoogle Scholar
  7. 7.
    Beal, J., Viroli, M.: Building blocks for aggregate programming of self-organising applications. In: 2nd FoCAS Workshop on Fundamentals of Collective Systems, pp. 8–13. IEEE CS (2014). doi: 10.1109/SASOW.2014.6
  8. 8.
    Beal, J., Viroli, M., Pianini, D., Damiani, F.: Self-adaptation to device distribution changes. In: Cabri, G., Picard, G., Suri, N. (eds.) 10th IEEE International Conference on Self-Adaptive and Self-Organizing Systems, SASO 2016, Augsburg, Germany, 12–16 September 2016, pp. 60–69 (2016). Best paper of IEEE SASO 2016. doi: 10.1109/SASO.2016.12
  9. 9.
    Bicocchi, N., Mamei, M., Zambonelli, F.: Self-organizing virtual macro sensors. TAAS 7(1), 2:1–2:28 (2012)CrossRefGoogle Scholar
  10. 10.
    Castelli, G., Mamei, M., Rosi, A., Zambonelli, F.: Engineering pervasive service ecosystems: the SAPERE approach. TAAS 10(1), 1:1–1:27 (2015)CrossRefGoogle Scholar
  11. 11.
    Damiani, F., Viroli, M.: Type-based self-stabilisation for computational fields. Logical Methods Comput. Sci. 11(4) (2015). doi: 10.2168/LMCS-11(4:21)
  12. 12.
    Damiani, F., Viroli, M., Beal, J.: A type-sound calculus of computational fields. Sci. Comput. Program. 117, 17–44 (2016). doi: 10.1016/j.scico.2015.11.005 CrossRefGoogle Scholar
  13. 13.
    Damiani, F., Viroli, M., Pianini, D., Beal, J.: Code mobility meets self-organisation: a higher-order calculus of computational fields. In: Graf, S., Viswanathan, M. (eds.) FORTE 2015. LNCS, vol. 9039, pp. 113–128. Springer, Cham (2015). doi: 10.1007/978-3-319-19195-9_8 CrossRefGoogle Scholar
  14. 14.
    Elhage, N., Beal, J.: Laplacian-based consensus on spatial computers. In: van der Hoek, W., Kaminka, G.A., Lespérance, Y., Luck, M., Sen, S. (eds.) 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), Toronto, Canada, 10–14 May 2010, vol. 1–3. pp. 907–914. IFAAMAS (2010)Google Scholar
  15. 15.
    Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S., Viroli, M., Arcos, J.L.: Description and composition of bio-inspired design patterns: a complete overview. Natural Comput. 12(1), 43–67 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fernandez-Marquez, J.L., Tchao, A., Serugendo, G.D.M., Stevenson, G., Ye, J., Dobson, S.: Analysis of new gradient based aggregation algorithms for data-propagation in mobile networks. In: Sixth IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops, SASOW 2012, Lyon, France, 10–14 September 2012, pp. 217–222. IEEE Computer Society (2012)Google Scholar
  17. 17.
    Giavitto, J.L., Michel, O., Cohen, J., Spicher, A.: Computation in space and space in computation. Technical report 103–2004, Univerite d’Evry, LaMI (2004)Google Scholar
  18. 18.
    Katzenelson, J.: Notes on amorphous computing. In: MIT Artificial Intelligence Laboratory. Citeseer (2000)Google Scholar
  19. 19.
    Liu, Q., Pruteanu, A., Dulman, S.: Gradient-based distance estimation for spatial computers. Comput. J. 56(12), 1469–1499 (2013). doi: 10.1093/comjnl/bxt124 CrossRefGoogle Scholar
  20. 20.
    Lluch-Lafuente, A., Loreti, M., Montanari, U.: Asynchronous distributed execution of fixpoint-based computational fields. CoRR abs/1610.00253(2016).
  21. 21.
    Montagna, S., Viroli, M., Fernandez-Marquez, J.L., Di Marzo Serugendo, G.: Injecting self-organisation into pervasive service ecosystems. Mobile Netw. Appl. 18(3), 398–412 (2013). doi: 10.1007/s11036-012-0411-1 CrossRefGoogle Scholar
  22. 22.
    Nagpal, R., Shrobe, H., Bachrach, J.: Organizing a global coordinate system from local information on an ad hoc sensor network. In: Zhao, F., Guibas, L. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 333–348. Springer, Heidelberg (2003). doi: 10.1007/3-540-36978-3_22 CrossRefGoogle Scholar
  23. 23.
    Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computational systems with ALCHEMIST. J. Simul. 7(3), 202–215 (2013)CrossRefGoogle Scholar
  24. 24.
    Pianini, D., Viroli, M., Beal, J.: Protelis: practical aggregate programming. In: ACM Symposium on Applied Computing 2015, pp. 1846–1853, April 2015Google Scholar
  25. 25.
    Royer, E.M., Toh, C.: A review of current routing protocols for ad hoc mobile wireless networks. IEEE Personal Commun. 6(2), 46–55 (1999)CrossRefGoogle Scholar
  26. 26.
    Stuart, A., Ord, J.K.: Kendall’s Advanced Theory of Statistics, vol. 1. Edward Arnold, London (1994). Copublished in the Americas by Halsted Press, Wiley, New York, 6th ednzbMATHGoogle Scholar
  27. 27.
    Viroli, M., Beal, J., Damiani, F., Pianini, D.: Efficient engineering of complex self-organising systems by self-stabilising fields. In: IEEE 9th International Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 81–90. IEEE (2015). doi: 10.1109/SASO.2015.16
  28. 28.
    Viroli, M., Casadei, M.: Biochemical tuple spaces for self-organising coordination. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 143–162. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02053-7_8 CrossRefGoogle Scholar
  29. 29.
    Viroli, M., Casadei, M., Montagna, S., Zambonelli, F.: Spatial coordination of pervasive services through chemical-inspired tuple spaces. ACM Trans. Auton. Adaptive Syst. 6(2), 14:1–14:24 (2011). doi: 10.1145/1968513.1968517 Google Scholar
  30. 30.
    Viroli, M., Damiani, F.: A calculus of self-stabilising computational fields. In: Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 163–178. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-43376-8_11 CrossRefGoogle Scholar
  31. 31.
    Viroli, M., Damiani, F., Beal, J.: A calculus of computational fields. In: Canal, C., Villari, M. (eds.) ESOCC 2013. CCIS, vol. 393, pp. 114–128. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45364-9_11 CrossRefGoogle Scholar
  32. 32.
    Viroli, M., Pianini, D., Beal, J.: Linda in space-time: an adaptive coordination model for mobile ad-hoc environments. In: Sirjani, M. (ed.) COORDINATION 2012. LNCS, vol. 7274, pp. 212–229. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30829-1_15 CrossRefGoogle Scholar
  33. 33.
    Weibull, W., et al.: A statistical distribution function of wide applicability. J. Appl. Mech. 18(3), 293–297 (1951)zbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Giorgio Audrito
    • 1
    • 2
    Email author
  • Ferruccio Damiani
    • 1
    • 2
  • Mirko Viroli
    • 3
  1. 1.Dipartimento di InformaticaUniversity of TorinoTorinoItaly
  2. 2.Centro di Competenza per il Calcolo ScientificoUniversity of TorinoTorinoItaly
  3. 3.DISIUniversity of BolognaCesenaItaly

Personalised recommendations