Communication Requirements for Team Automata

  • Maurice H. ter Beek
  • Josep Carmona
  • Rolf Hennicker
  • Jetty Kleijn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10319)

Abstract

Compatibility of components is an important issue in the quest for systems of systems that guarantee successful communications, free from message loss and indefinite waiting for inputs. In this paper, we investigate compatibility in the context of systems consisting of reactive components which may communicate through the synchronised execution of common actions. We model such systems in the team automata framework, which does not impose any a priori restrictions on the synchronisation policy followed to combine the components. We identify a family of representative synchronisation types based on the number of sending and receiving components participating in synchronisations. Then, we provide a generic procedure to derive, for each synchronisation type, requirements for receptiveness and for responsiveness of team automata that prevent that outputs are not accepted and inputs are not provided, respectively. Due to the genericity of our approach w.r.t. synchronisation policies, we can capture compatibility notions for various multi-component system models known from the literature.

References

  1. 1.
    Carmona, J., Cortadella, J.: Input/output compatibility of reactive systems. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 360–377. Springer, Heidelberg (2002). doi:10.1007/3-540-36126-X_22 CrossRefGoogle Scholar
  2. 2.
    Carmona, J., Kleijn, J.: Compatibility in a multi-component environment. Theor. Comput. Sci. 484, 1–15 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algorithms. In: PODC 1987, pp. 137–151. ACM (1987)Google Scholar
  4. 4.
    Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Q. 2(3), 219–246 (1989). https://ir.cwi.nl/pub/18164
  5. 5.
    Ellis, C.A.: Team automata for groupware systems. In: GROUP 1997, pp. 415–424. ACM (1997)Google Scholar
  6. 6.
    ter Beek, M.H., Ellis, C.A., Kleijn, J., Rozenberg, G.: Synchronizations in team automata for groupware systems. Comput. Sup. Coop. Work 12(1), 21–69 (2003)Google Scholar
  7. 7.
    de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE 2001, pp. 109–120. ACM (2001)Google Scholar
  8. 8.
    de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Broy, M., Grünbauer, J., Harel, D., Hoare, T. (eds.) Engineering Theories of Software Intensive Systems. NATO Science Series (Series II: Mathematics, Physics and Chemistry), vol. 195, pp. 83–104. Springer, Dordrecht (2005)CrossRefGoogle Scholar
  9. 9.
    Brim, L., Cerná, I., Vareková, P., Zimmerova, B.: Component-interaction automata as a verification-oriented component-based system specification. ACM Softw. Eng. Notes 31(2), 4 (2006)CrossRefGoogle Scholar
  10. 10.
    Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O automata for interface and product line theories. In: Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 64–79. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71316-6_6 CrossRefGoogle Scholar
  11. 11.
    Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On weak modal compatibility, refinement, and the MIO workbench. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 175–189. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12002-2_15 CrossRefGoogle Scholar
  12. 12.
    Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342 (1983)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Durán, F., Ouederni, M., Salaün, G.: A generic framework for \(n\)-protocol compatibility checking. Sci. Comput. Program. 77(7–8), 870–886 (2012)CrossRefMATHGoogle Scholar
  14. 14.
    ter Beek, M.H., Carmona, J., Kleijn, J.: Conditions for compatibility of components. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 784–805. Springer, Cham (2016). doi:10.1007/978-3-319-47166-2_55
  15. 15.
    Jonsson, B.: Compositional specification and verification of distributed systems. ACM Trans. Program. Lang. Syst. 16(2), 259–303 (1994)CrossRefGoogle Scholar
  16. 16.
    ter Beek, M.H., Kleijn, J.: Team automata satisfying compositionality. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 381–400. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45236-2_22
  17. 17.
    Gössler, G., Sifakis, J.: Composition for component-based modeling. Sci. Comput. Program. 55, 161–183 (2005)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    ter Beek, M.H., Kleijn, J.: Modularity for teams of I/O automata. Inf. Process. Lett. 95(5), 487–495 (2005)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Lüttgen, G., Vogler, W., Fendrich, S.: Richer interface automata with optimistic and pessimistic compatibility. Acta Inf. 52(4–5), 305–336 (2015)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In: SEFM 2006, pp. 3–12. IEEE (2006)Google Scholar
  21. 21.
    Arnold, A.: Finite Transition Systems: Semantics of Communicating Systems. Prentice Hall, Englewood Cliffs (1994)MATHGoogle Scholar
  22. 22.
    Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River (1989)MATHGoogle Scholar
  23. 23.
    Engels, G., Groenewegen, L.: Towards team-automata-driven object-oriented collaborative work. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 257–276. Springer, Heidelberg (2002). doi:10.1007/3-540-45711-9_15 CrossRefGoogle Scholar
  24. 24.
    Hennicker, R., Knapp, A.: Moving from interface theories to assembly theories. Acta Inf. 52(2–3), 235–268 (2015)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Hennicker, R., Bidoit, M., Dang, T.-S.: On synchronous and asynchronous compatibility of communicating components. In: Lluch Lafuente, A., Proença, J. (eds.) COORDINATION 2016. LNCS, vol. 9686, pp. 138–156. Springer, Cham (2016). doi:10.1007/978-3-319-39519-7_9 Google Scholar
  26. 26.
    Isokawa, T., et al.: Computing by swarm networks. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 50–59. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79992-4_7 CrossRefGoogle Scholar
  27. 27.
    Armstrong, J.: Erlang. Commun. ACM 53(9), 68–75 (2010)CrossRefGoogle Scholar
  28. 28.
    ter Beek, M.H., Bucchiarone, A., Gnesi, S.: Web service composition approaches: from industrial standards to formal methods. In: ICIW 2007. IEEE (2007)Google Scholar
  29. 29.
    Sheng, Q.Z., Qiao, X., Vasilakos, A.V., Szabo, C., Bourne, S., Xu, X.: Web services composition: a decade’s overview. Inf. Sci. 280, 218–238 (2014)CrossRefGoogle Scholar
  30. 30.
    Dokter, K., Jongmans, S.-S., Arbab, F., Bliudze, S.: Combine and conquer: relating BIP and Reo. J. Log. Algebr. Meth. Program. 86(1), 3–20 (2017)MathSciNetMATHGoogle Scholar
  31. 31.
    Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating automata: characterisation and synthesis of global session types. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 174–186. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39212-2_18 CrossRefGoogle Scholar
  32. 32.
    Fiadeiro, J.L., Lopes, A.: An interface theory for service-oriented design. Theor. Comput. Sci. 503, 1–30 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Maurice H. ter Beek
    • 1
  • Josep Carmona
    • 2
  • Rolf Hennicker
    • 3
  • Jetty Kleijn
    • 4
  1. 1.ISTI–CNRPisaItaly
  2. 2.Universitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Ludwig-Maximilians-UniversitätMunichGermany
  4. 4.LIACSLeiden UniversityLeidenThe Netherlands

Personalised recommendations