Advertisement

A 3D Convolutional Neural Network Approach for the Diagnosis of Parkinson’s Disease

  • Francisco Jesús Martinez-MurciaEmail author
  • Andres Ortiz
  • Juan Manuel Górriz
  • Javier Ramírez
  • Fermin Segovia
  • Diego Salas-Gonzalez
  • Diego Castillo-Barnes
  • Ignacio A. Illán
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10337)

Abstract

Parkinsonism is the second most common neurodegenerative disease, originated by a dopamine decrease in the striatum. Single Photon Emission Computed Tomography (SPECT) images acquired using the DaTSCAN drug are a widely extended tool in the diagnosis of Parkinson’s Disease (PD), since they can measure the amount of dopamine transporters in the striatum. Many automatic systems have been developed to aid in the diagnosis of PD, using traditional feature extraction methods. In this paper, we propose a novel system based on three-dimensional Convolutional Neural Networks (CNNs), that aims to differenciate between PD-affected patients and unaffected subjects. The proposed system achieves up to a 95.5% accuracy and 96.2% sensitivity in the diagnosis of PD.

Keywords

Single Photon Emission Compute Tomography Progressive Supranuclear Palsy Independent Component Analysis Convolutional Neural Network Progressive Supranuclear Palsy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was partly supported by the MINECO/FEDER under the TEC2015-64718-R project and the Consejera de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía, Spain) under the Excellence Project P11-TIC- 7103.

References

  1. 1.
    Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). http://tensorflow.org/, software available from tensorflow.org
  2. 2.
    Benamer, T.S., Patterson, J., Grosset, D.G., Booij, J., Bruin, K., Royen, E., Speelman, J.D., Horstink, M.H., Sips, H.J., Dierckx, R.A., Versijpt, J., Decoo, D., Linden, C., Hadley, D.M., Doder, M., Lees, A.J., Costa, D.C., Gacinovic, S., Oertel, W.H., Pogarell, O., Hoeffken, H., Joseph, K., Tatsch, K., Schwarz, J., Ries, V.: Accurate differentiation of Parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov. Disord.: Official J. Mov. Disord. Soc. 15(3), 503–510 (2000). PMID: 10830416Google Scholar
  3. 3.
    Booij, J., Habraken, J.B., Bergmans, P., Tissingh, G., Winogrodzka, A., Wolters, E.C., Janssen, A.G., Stoof, J.C., Royen, E.A.: Imaging of dopamine transporters with iodine-123-FP-CIT SPECT in healthy controls and patients with Parkinson’s disease. J. Nucl. Med. 39(11), 1879–1884 (1998)Google Scholar
  4. 4.
    Ciresan, D.C., Meier, U., Masci, J., Maria Gambardella, L., Schmidhuber, J.: Flexible, high performance convolutional neural networks for image classification. In: IJCAI Proceedings-International Joint Conference on Artificial Intelligence, Barcelona, Spain, vol. 22, p. 1237 (2011)Google Scholar
  5. 5.
    Eckert, T., Edwards, C.: The application of network mapping in differential diagnosis of Parkinsonian disorders. Clin. Neurosci. Res. 6(6), 359–366 (2007). http://www.sciencedirect.com/science/article/pii/S1566277207000023. Neural Networks in the Imaging of Neuropsychiatric Diseases
  6. 6.
    Erro, R., Schneider, S.A., Stamelou, M., et al.: What do patients with scans without evidence of dopaminergic deficit (SWEDD) have? New evidence and continuing controversies. J. Neurol. Neurosurg. Psychiatry 87, 319–323 (2016)CrossRefGoogle Scholar
  7. 7.
    Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, Cambridge (2007)Google Scholar
  8. 8.
    Initiative, T.P.P.M.: PPMI: Imaging Technical Operations Manual, 2nd edn, June 2010Google Scholar
  9. 9.
    Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of International Joint Conference on AI, pp. 1137–1145 (1995). http://citeseer.ist.psu.edu/kohavi95study.html
  10. 10.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  11. 11.
    Lau, L.M.L., Breteler, M.M.B.: Epidemiology of Parkinson’s disease. Lancet Neurol. 5, 525–535 (2006)Google Scholar
  12. 12.
    Marshall, V.L., Reininger, C.B., Marquardt, M., Patterson, J., Hadley, D.M., Oertel, W.H., Benamer, H.T., Kemp, P., Burn, D., Tolosa, E., et al.: Parkinson’s disease is overdiagnosed clinically at baseline in diagnostically uncertain cases: a 3-year European multicenter study with repeat [123i] FP-CIT SPECT. Mov. Disord. 24(4), 500–508 (2009)CrossRefGoogle Scholar
  13. 13.
    Martinez-Murcia, F., Górriz, J., Ramírez, J., Moreno-Caballero, M., Gómez-Río, M., Initiative, P.P.M., et al.: Parametrization of textural patterns in 123i-ioflupane imaging for the automatic detection of Parkinsonism. Med. Phys. 41(1), 012502 (2014)CrossRefGoogle Scholar
  14. 14.
    Martínez-Murcia, F.J., Górriz, J.M., Ramírez, J., Illán, I., Ortiz, A.: Automatic detection of Parkinsonism using significance measures and component analysis in datscan imaging. Neurocomputing 126, 58–70 (2014)CrossRefGoogle Scholar
  15. 15.
    Ortiz, A., Martínez-Murcia, F.J., García-Tarifa, M.J., Lozano, F., Górriz, J.M., Ramírez, J.: Automated diagnosis of Parkinsonian syndromes by deep sparse filtering-based features. In: Chen, Y.-W., Tanaka, S., Howlett, R.J., Jain, L.C. (eds.) Innovation in Medicine and Healthcare 2016. SIST, vol. 60, pp. 249–258. Springer, Cham (2016). doi: 10.1007/978-3-319-39687-3_24 CrossRefGoogle Scholar
  16. 16.
    Payan, A., Montana, G.: Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks. arXiv preprint arXiv:1502.02506 (2015)
  17. 17.
    Salas-Gonzalez, D., Górriz, J.M., Ramírez, J., Illán, I.A., Padilla, P., Martínez-Murcia, F.J., Lang, E.W.: Building a FP-CIT SPECT brain template using a posterization approach. Neuroinformatics 13(4), 391–402 (2015)CrossRefGoogle Scholar
  18. 18.
    Salas-Gonzalez, D., Górriz, J.M., Ramírez, J., López, M., Illan, I.A., Segovia, F., Puntonet, C.G., Gómez-Río, M.: Analysis of SPECT brain images for the diagnosis of Alzheimer’s disease using moments and support vector machines. Neurosci. Lett. 461, 60–64 (2009)CrossRefGoogle Scholar
  19. 19.
    Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRefGoogle Scholar
  20. 20.
    Segovia, F., Górriz, J.M., Ramírez, J., Álvarez, I., Jiménez-Hoyuela, J.M., Ortega, S.J.: Improved Parkinsonism diagnosis using a partial least squares based approach. Med. Phys. 39(7), 4395–4403 (2012)CrossRefGoogle Scholar
  21. 21.
    Segovia, F., Gorriz, J., Ramírez, J., Salas-Gonzalez, D.: Multiclass classification of 18 F-DMFP-PET data to assist the diagnosis of Parkinsonism. In: 2016 International Workshop on Pattern Recognition in Neuroimaging (PRNI), pp. 1–4. IEEE (2016)Google Scholar
  22. 22.
    Segovia, F., García-Pérez, M., Górriz, J.M., Ramírez, J., Martínez-Murcia, F.J.: Assisting the diagnosis of neurodegenerative disorders using principal component analysis and tensorflow. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado, E. (eds.) ICEUTE/SOCO/CISIS -2016. AISC, vol. 527, pp. 43–52. Springer, Cham (2017). doi: 10.1007/978-3-319-47364-2_5 CrossRefGoogle Scholar
  23. 23.
    Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)
  24. 24.
    Towey, D.J., Bain, P.G., Nijran, K.S.: Automatic classification of 123I-FP-CIT (DaTSCAN) SPECT images. Nucl. Med. Commun. 32(8), 699–707 (2011). http://www.ncbi.nlm.nih.gov/pubmed/21659911. PMID: 21659911

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Francisco Jesús Martinez-Murcia
    • 1
    Email author
  • Andres Ortiz
    • 2
  • Juan Manuel Górriz
    • 1
  • Javier Ramírez
    • 1
  • Fermin Segovia
    • 1
  • Diego Salas-Gonzalez
    • 1
  • Diego Castillo-Barnes
    • 1
  • Ignacio A. Illán
    • 3
  1. 1.Department of Signal Theory, Networking and CommunicationsUniversity of GranadaGranadaSpain
  2. 2.Department of Communications EngineeringUniversity of MálagaMálagaSpain
  3. 3.Department of Scientific ComputingThe Florida State UniversityTallahasseeUSA

Personalised recommendations