Advertisement

A Memetic Algorithm for Due-Date Satisfaction in Fuzzy Job Shop Scheduling

  • Juan José PalaciosEmail author
  • Camino R. Vela
  • Inés González-Rodríguez
  • Jorge Puente
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10337)

Abstract

We consider the job shop scheduling problem with fuzzy sets modelling uncertain durations and flexible due dates. With the goal of maximising due-date satisfaction, we propose a memetic algorithm that combines intensification and diversification by integrating local search in a genetic algorithm. Experimental results illustrate the synergy between both components of the algorithm as well as its potential to provide good solutions.

Keywords

Local Search Completion Time Fuzzy Number Critical Path Memetic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research has been supported by the Spanish Government under research grant TIN2016-79190-R.

References

  1. 1.
    Abdullah, S., Abdolrazzagh-Nezhad, M.: Fuzzy job-shop scheduling problems: a review. Inf. Sci. 278, 380–407 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bierwirth, C.: A generalized permutation approach to job shop scheduling with genetic algorithms. OR Spectr. 17, 87–92 (1995)CrossRefzbMATHGoogle Scholar
  3. 3.
    Błażewicz, J., Domschke, W., Pesch, E.: The job shop scheduling problem: conventional and new solution techniques. Eur. J. Oper. Res. 93, 1–33 (1996)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dubois, D., Fargier, H., Fortemps, P.: Fuzzy scheduling: modelling flexible constraints vs. coping with incomplete knowledge. Eur. J. Oper. Res. 147, 231–252 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    González-Rodríguez, I., Puente, J., Vela, C.R.: A multiobjective approach to fuzzy job shop problem using genetic algorithms. In: Borrajo, D., Castillo, L., Corchado, J.M. (eds.) CAEPIA 2007. LNCS (LNAI), vol. 4788, pp. 80–89. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75271-4_9 CrossRefGoogle Scholar
  6. 6.
    González Rodríguez, I., Vela, C.R., Puente, J., Varela, R.: A new local search for the job shop problem with uncertain durations. In: Proceedings of the ICAPS-2008, pp. 124–131. AAAI Press (2008)Google Scholar
  7. 7.
    Graham, R., Lawler, E., Lenstra, J., Kan, A.R.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discret. Math. 4, 287–326 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lei, D.: Solving fuzzy job shop scheduling problems using random key genetic algorithm. Int. J. Adv. Manuf. Technol. 49, 253–262 (2010)CrossRefGoogle Scholar
  9. 9.
    Ono, I., Yamamura, M., Kobayashi, S.: A genetic algorithm for job-shop scheduling problems using job-based order crossover. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 547–552. IEEE (1996)Google Scholar
  10. 10.
    Palacios, J.J., Derbel, B.: On maintaining diversity in MOEA/D: application to a biobjective combinatorial FJSP. In: Proceedings of GECCO 2015, pp. 719–726. ACM (2015)Google Scholar
  11. 11.
    Palacios, J.J., González, M.A., Vela, C.R., González-Rodríguez, I., Puente, J.: Genetic tabu search for the fuzzy flexible job shop problem. Comput. Oper. Res. 54, 74–89 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Palacios, J.J., Puente, J., Vela, C.R., González-Rodríguez, I.: Benchmarks for fuzzy job shop problems. Inf. Sci. 329, 736–752 (2016)CrossRefGoogle Scholar
  13. 13.
    Palacios, J.J., Vela, C.R., González-Rodríguez, I., Puente, J.: Schedule generation schemes for job shop problems with fuzziness. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) Proceedings of ECAI 2014, pp. 687–692. IOS Press, Amsterdam (2014)Google Scholar
  14. 14.
    Sakawa, M., Kubota, R.: Fuzzy programming for multiobjective job shop scheduling with fuzzy processing time and fuzzy duedate through genetic algorithms. Eur. J. Oper. Res. 120, 393–407 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sakawa, M., Mori, T.: An efficient genetic algorithm for job-shop scheduling problems with fuzzy processing time and fuzzy duedate. Comput. Ind. Eng. 36, 325–341 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Juan José Palacios
    • 1
    Email author
  • Camino R. Vela
    • 1
  • Inés González-Rodríguez
    • 2
  • Jorge Puente
    • 1
  1. 1.Department of Computer ScienceUniversity of OviedoOviedoSpain
  2. 2.Department of Mathematics, Statistics and ComputingUniversity of CantabriaSantanderSpain

Personalised recommendations