Restrictive Lung Disease and Pneumothoraces

  • Katherine Gelber
  • Stephanie Goodman


  1. 1.

    RLD is characterized by a limitation of lung expansion; the hallmark of the condition is decreased total lung capacity (TLC) below the fifth percentile of the predicted value [1].

  2. 2.

    This results in decreased functional residual capacity (FRC), increased work of breathing, and often hypoxemia.

  3. 3.

    Reduced forced expiratory volume (FEV1) and forced vital capacity (FVC) (with normal or elevated ratio) are characteristic findings.

  4. 4.

    RLD may result from [1] pathology of the parenchyma itself (e.g., idiopathic pulmonary fibrosis, granulomatous disease, scleroderma, systemic lupus erythematosus), [2] neuromuscular disease (e.g., myasthenia gravis, amyotrophic lateral sclerosis), or [3] structural abnormality (e.g., kyphoscoliosis, morbid obesity).

  5. 5.

    The diffusion capacity of carbon monoxide (DLCO) differentiates intrinsic lung disease (decreased DLCO) from extrapulmonary causes (normal DLCO).

  6. 6.

    Patients with intrinsic parenchymal disease and pulmonary fibrosis may also have secondary pulmonary hypertension, which carries a significantly higher morbidity and mortality [2].

  7. 7.

    TLC is used to classify RLD as mild (65–80% predicted value), moderate (50–65%), or severe (less than 50%).



Restrictive lung disease Total lung capacity Functional residual capacity Minute ventilation Pulmonary function testing Primary spontaneous pneumothorax Pregnancy Neuraxial anesthesia 


  1. 1.
    Pellegrino R. Interpretative strategies for lung function tests. Eur Respir J. 2005;26(5):948–68.CrossRefGoogle Scholar
  2. 2.
    Bédard E, Dimopoulos K, Gatzoulis MA. Has there been any progress made on pregnancy outcomes among women with pulmonary arterial hypertension? Eur Heart J. 2009;30(3):256–65.CrossRefGoogle Scholar
  3. 3.
    Milne JA, Howie AD, Pack AI. Dyspnoea during normal pregnancy. Br J Obstet Gynaecol. 1978;85(4):260–3.CrossRefGoogle Scholar
  4. 4.
    King TE. Restrictive lung disease in pregnancy. Clin Chest Med. 1992;13(4):607.PubMedGoogle Scholar
  5. 5.
    Lapinsky SE, Tram C, Mehta S, Maxwell CV. Restrictive lung disease in pregnancy. Chest. 2014;145(2):394–8.CrossRefGoogle Scholar
  6. 6.
    Weiss BM, Zemp L, Seifert B, Hess OM. Outcome of pulmonary vascular disease in pregnancy: a systematic overview from 1978 through 1996. J Am Coll Cardiol. 1998;31(7):1650–7.CrossRefGoogle Scholar
  7. 7.
    Boggess KA, Easterling TR, Raghu G. Management and outcome of pregnant women with interstitial and restrictive lung disease. Am J Obstet Gynecol. 1995;173(4):1007–14.CrossRefGoogle Scholar
  8. 8.
    Yun E, Topulos GP, Body SC, Datta S, Bader AM. Pulmonary function changes during epidural anesthesia for cesarean delivery. Anesth Analg. 1996;82(4):750–3.PubMedGoogle Scholar
  9. 9.
    Groeben H. Epidural anesthesia and pulmonary function. J Anesth. 2006;20(4):290–9.CrossRefGoogle Scholar
  10. 10.
    Harrop-Griffiths AW, Ravalia A, Browne DA, Robinson PN. Regional anaesthesia and cough effectiveness. A study in patients undergoing caesarean section. Anaesthesia. 1991;46(1):11–3.CrossRefGoogle Scholar
  11. 11.
    Geng G, Li W, Huang S. Pulmonary effects of bupivacaine and ropivacaine in parturients undergoing spinal anesthesia for elective cesarean delivery. Int J Clin Exp Med. 2014;7(5):1417–21.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Lirk P, Kleber N, Mitterschiffthaler G, Keller C, Benzer A, Putz G. Pulmonary effects of bupivacaine, ropivacaine, and levobupivacaine in parturients undergoing spinal anaesthesia for elective caesarean delivery: a randomised controlled study. Int J Obstet Anesth. 2010;19(3):287–92.CrossRefGoogle Scholar
  13. 13.
    von Ungern-Sternberg BS, Regli A, Bucher E, Reber A, Schneider MC. Impact of spinal anaesthesia and obesity on maternal respiratory function during elective Caesarean section. Anaesthesia. 2004;59(8):743–9.CrossRefGoogle Scholar
  14. 14.
    Sangoul F, Fox GS, Houle GL. Effect of regional analgesia on maternal oxygen consumption during the first stage of labor. Am J Obstet Gynecol. 1975;121(8):1080–3.CrossRefGoogle Scholar
  15. 15.
    Hägerdal M, Morgan CW, Sumner AE, Gutsche BB. Minute ventilation and oxygen consumption during labor with epidural analgesia. Anesthesiology. 1983;59(5):425–7.CrossRefGoogle Scholar
  16. 16.
    Noppen M. Spontaneous pneumothorax: epidemiology, pathophysiology and cause. Eur Respir Rev. 2010;19(117):217–9.CrossRefGoogle Scholar
  17. 17.
    Lal A, Anderson G, Cowen M, Lindow S, Arnold AG. Pneumothorax and pregnancy. Chest. 2007;132(3):1044–8.CrossRefGoogle Scholar
  18. 18.
    MacDuff A, Arnold A, Harvey J. Management of spontaneous pneumothorax: British Thoracic Society pleural disease guideline 2010. Thorax. 2010;65(Suppl 2):ii18–31.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Katherine Gelber
    • 1
  • Stephanie Goodman
    • 2
  1. 1.Department of AnesthesiologyCedars Sinai Medical CenterLos AngelesUSA
  2. 2.Department of AnesthesiologyColumbia University Medical CenterNew YorkUSA

Personalised recommendations