Hybridization of Analytic Programming and Differential Evolution for Time Series Prediction

  • Roman SenkerikEmail author
  • Adam Viktorin
  • Michal Pluhacek
  • Tomas Kadavy
  • Ivan Zelinka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10334)


This research deals with the hybridization of symbolic regression open framework, which is Analytical Programming (AP) and Differential Evolution (DE) algorithm in the task of time series prediction. This paper provides a closer insight into applicability and performance of the hybrid connection between AP and different strategies of DE. AP can be considered as a powerful open framework for symbolic regression thanks to its usability in any programming language with arbitrary driving evolutionary/swarm based algorithm. Thus, the motivation behind this research, is to explore and investigate the applicability and differences in performance of AP driven by basic canonical strategy of DE as well as by the state of the art strategy, which is Success-History based Adaptive Differential Evolution (SHADE). An experiment with three case studies has been carried out here with the several time series consisting of GBP/USD exchange rate, where the first 2/3 of data were used for regression process and the last 1/3 of the data were used as a verification for prediction process. The differences between regression/prediction models synthesized by means of AP as a direct consequences of different DE strategies performances are briefly discussed within conclusion section of this paper.


Analytic programming Differential evolution SHADE Time series prediction 



This work was supported by Grant Agency of the Czech Republic - GACR P103/15/06700S, further by project NPU I No. MSMT-7778/2014 by the Ministry of Education of the Czech Republic and also by the European Regional Development Fund under the Project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089, partially supported by Grant SGS 2017/134 of VSB-Technical University of Ostrava; and by Internal Grant Agency of Tomas Bata University under the projects No. IGA/Cebia-Tech/2017/004.


  1. 1.
    Zelinka, I., Davendra, D., Senkerik, R., Jasek, R., Oplatkova, Z.: Analytical programming - a novel approach for evolutionary synthesis of symbolic structures. In: Kita, E. (ed.) Evolutionary Algorithms. InTech, Rijeka (2011)Google Scholar
  2. 2.
    Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Wang, W.-C., Chau, K.-W., Cheng, C.-T., Qiu, L.: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 374(3), 294–306 (2009)CrossRefGoogle Scholar
  4. 4.
    Santini, M., Tettamanzi, A.: Genetic programming for financial time series prediction. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tettamanzi, Andrea G.B., Langdon, William B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 361–370. Springer, Heidelberg (2001). doi: 10.1007/3-540-45355-5_29 CrossRefGoogle Scholar
  5. 5.
    Pallit, A., Popovic, D.: Computational Intelligence in Time Series Forecasting. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT press, Massachusetts (1992)zbMATHGoogle Scholar
  7. 7.
    Zelinka, I., Oplatková, Z., Nolle, L.: Boolean symmetry function synthesis by means of arbitrary evolutionary algorithms-comparative study. Int. J. Simul. Syst. Sci. Technol. 6(9), 44–56 (2005)Google Scholar
  8. 8.
    Oplatková, Z., Zelinka, I.: Investigation on artificial ant using analytic programming. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 949–950. ACM (2006)Google Scholar
  9. 9.
    Zelinka, I., Chen, G., Celikovsky, S.: Chaos synthesis by means of evolutionary algorithms. Int. J. Bifurcat. Chaos 18(04), 911–942 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Senkerik, R., Oplatkova, Z., Zelinka, I., Davendra, D.: Synthesis of feedback controller for three selected chaotic systems by means of evolutionary techniques: analytic programming. Math. Comput. Model. 57(1–2), 57–67 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution - A Practical Approach to Global Optimization. Natural Computing Series. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  12. 12.
    Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental analysis. Artif. Intell. Rev. 33(1–2), 61–106 (2010)CrossRefGoogle Scholar
  13. 13.
    Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)CrossRefGoogle Scholar
  14. 14.
    Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution–an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)CrossRefGoogle Scholar
  15. 15.
    Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)CrossRefGoogle Scholar
  16. 16.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)CrossRefGoogle Scholar
  17. 17.
    Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)CrossRefGoogle Scholar
  18. 18.
    Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 13(3), 526–553 (2009)CrossRefGoogle Scholar
  19. 19.
    Mininno, E., Neri, F., Cupertino, F., Naso, D.: Compact differential evolution. IEEE Trans. Evol. Comput. 15(1), 32–54 (2011)CrossRefGoogle Scholar
  20. 20.
    Mallipeddi, R., Suganthan, P.N., Pan, Q.-K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11(2), 1679–1696 (2011)CrossRefGoogle Scholar
  21. 21.
    Brest, J., Korošec, P., Šilc, J., Zamuda, A., Bošković, B., Maučec, M.S.: Differential evolution and differential ant-stigmergy on dynamic optimisation problems. Int. J. Syst. Sci. 44(4), 663–679 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Tanabe, R., Fukunaga, A.S.: Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665. IEEE (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Roman Senkerik
    • 1
    Email author
  • Adam Viktorin
    • 1
  • Michal Pluhacek
    • 1
  • Tomas Kadavy
    • 1
  • Ivan Zelinka
    • 2
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer ScienceTechnical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations