Advertisement

Parallel Implementation of a Simplified Semi-physical Wildland Fire Spread Model Using OpenMP

  • D. ÁlvarezEmail author
  • D. Prieto
  • M. I. Asensio
  • J. M. Cascón
  • L. Ferragut
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10334)

Abstract

We present a parallel 2D version of a simplified semi-physical wildland fire spread model based on conservation equations, with convection and radiation as the main heat transfer mechanisms. This version includes some 3D effects. The OpenMP framework allows distributing the prediction operations among the available threads in a multicore architecture, thereby reducing the computational time and obtaining the prediction results much more quickly. The results from the experiments using data from a real fire in Galicia (Spain) confirm the benefits of using the parallel version.

Keywords

OpenMP Parallel computing Performance Wildland fire model 

Notes

Acknowledgement

This work has been partially supported by the Department of Education of the regional government, the Junta of Castilla y León, Grant contract: SA020U16. The authors are also grateful to Arsenio Morillo Rodríguez chief of the forest prevention and valorization area of the regional government, the Xunta de Galicia, for his technical support providing all the necessary information about the Osoño fire.

References

  1. 1.
    Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: Proceedings of the April 18–20, 1967, Spring Joint Computer Conference, AFIPS 1967 (Spring), pp. 483–485, New York, NY, USA. ACM (1967)Google Scholar
  2. 2.
    Anderson, H.E.: Aids to determining fuel models for estimating fire behavior. General Technical Report INT-122, U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station (1982)Google Scholar
  3. 3.
    Andrews, P.L.: BEHAVE: fire behavior prediction and fuel modeling system-BURN subsystem, Part 1. U.S. Department of Agriculture, Forest Service, Intermountain Research Station Ogden, UT (1986)Google Scholar
  4. 4.
    Arca, B., Ghisu, T., Spataro, W., Trunfio, G.A.: GPU-accelerated optimization of fuel treatments for mitigating wildfire hazard. Procedia Comput. Sci. 18, 966–975 (2013)CrossRefGoogle Scholar
  5. 5.
    Asensio, M.I., Ferragut, L., Simon, J.: A convection model for fire spread simulation. Appl. Math. Lett. 18(6), 673–677 (2005). Special issue on the occasion of MEGA 2003CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Cascón, J.M., Engdahl, Y.A., Ferragut, L., Hernández, E.: A reduced basis for a local high definition wind model. Comput. Methods Appl. Mech. Eng. 311, 438–456 (2016)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Cencerrado, A., Artés, T., Cortés, A., Margalef, T.: Relieving uncertainty in forest fire spread prediction by exploiting multicore architectures. Procedia Comput. Sci. 51, 1752–1761 (2015)CrossRefGoogle Scholar
  8. 8.
    Esvensen, G.: Data Assimilation, The Ensemble Kalman Filter. Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Ferragut, L., Asensio, M.I., Cascón, J.M., Prieto, D.: A simplified wildland fire model applied to a real case. In: Casas, F., Martinez, V. (eds.) Advances in Differential Equations and Applications, pp. 155–167. Springer International Publishing, Cham (2014)Google Scholar
  10. 10.
    Ferragut, L., Asensio, M.I., Cascón, J.M., Prieto, D.: A wildland fire physical model well suited to data assimilation. Pure Appl. Geophys. 172(1), 121–139 (2015)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ferragut, L., Asensio, M.I., Monedero, S.: Modelling radiation and moisture content in fire spread. Commun. Numer. Methods Eng. 23(9), 819–833 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Ferragut, L., Asensio, M.I., Simon, J.: High definition local adjustment model of 3D wind fields performing only 2D computations. Int. J. Numer. Methods Biomed. Eng. 27(4), 510–523 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: a call graph execution profiler. In: SIGPLAN Notices, vol. 17, no. 6, pp. 120–126 (1982)Google Scholar
  14. 14.
    Innocenti, E., Silvani, X., Muzy, A., Hill, D.R.C.: A software framework for fine grain parallelization of cellular models with OpenMP: application to fire spread. Environ. Model. Softw. 24(7), 819–831 (2009)CrossRefGoogle Scholar
  15. 15.
    Itzkowitz, M., Mazurov, O., Copty, N., Lin, Y.: An OpenMP runtime API for profiling. Sun Microsystems, Inc., OpenMP ARB White Paper. http://www.compunity.org/futures/omp-api.html
  16. 16.
    Mandel, J., Bennethum, L.S., Beezley, J.D., Coen, J.L., Douglas, C.C., Kim, M., Vodacek, A.: A wildfire model with data assimilation. Math. Comput. Simul. 79, 584–606 (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    MPI Forum. Message Passing Interface (MPI) Forum Home Page, December 2009. http://www.mpi-forum.org/
  18. 18.
    Pastor, E., Zárate, L., Planas, E., Arnaldos, J.: Mathematical models and calculation systems for the study of wildland fire behaviour. Prog. Energy Combust. Sci. 29(2), 139–153 (2003)CrossRefGoogle Scholar
  19. 19.
    Perry, G.L.W.: Current approaches to modelling the spread of wildland fire: a review. Prog. Phys. Geogr. 22(2), 222–245 (1998)CrossRefGoogle Scholar
  20. 20.
    Prieto, D., Asensio, M.I., Ferragut, L., Cascón, J.M.: Sensitivity analysis and parameter adjustment in a simplified physical wildland fire model. Adv. Eng. Softw. 90, 98–106 (2015)CrossRefzbMATHGoogle Scholar
  21. 21.
    Scott, J.H., Burgan, R.E.: Models, standard fire behavior Fuel : a comprehensive set for use with Rothermel’s surface fire spread model. General Technical Report RMRS-GTR-153, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station (2005)Google Scholar
  22. 22.
    Sullivan, A.L.: Wildland surface fire spread modelling, 1990–2007. 1: physical and quasi-physical models. Int. J. Wildland Fire 18(4), 349–368 (2009)CrossRefGoogle Scholar
  23. 23.
    Sullivan, A.L.: Wildland surface fire spread modelling, 1990–2007. 2: empirical and quasi-empirical models. Int. J. Wildland Fire 18(4), 369–386 (2009)CrossRefGoogle Scholar
  24. 24.
    Sullivan, A.L.: Wildland surface fire spread modelling, 1990–2007. 3: simulation and mathematical analogue models. Int. J. Wildland Fire 18(4), 387–403 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • D. Álvarez
    • 1
    Email author
  • D. Prieto
    • 1
  • M. I. Asensio
    • 1
    • 2
  • J. M. Cascón
    • 2
    • 3
  • L. Ferragut
    • 1
    • 2
  1. 1.Departamento de Matemática AplicadaUniversidad de SalamancaSalamancaSpain
  2. 2.I. U. de Física Fundamental y MatemáticasUniversidad de SalamancaSalamancaSpain
  3. 3.Departamento de Economía e Historia EconómicaUniversidad de Salamanca, Edificio FES, Campus Miguel de UnamunoSalamancaSpain

Personalised recommendations