Estimation of Rates of Reactions Triggered by Electron Transfer in Top-Down Mass Spectrometry

  • Michał Aleksander CiachEmail author
  • Mateusz Krzysztof ŁąckiEmail author
  • Błażej Miasojedow
  • Frederik Lermyte
  • Dirk Valkenborg
  • Frank Sobott
  • Anna Gambin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10330)


Electron transfer dissociation (ETD) is a versatile technique used in mass spectrometry for the high-throughput characterization of proteins. It consists of several competing reactions triggered by the transfer of an electron from its anion source to the sample cations. One can retrieve relative quantities of the products from mass spectra.

We present a method to analyze these results from the perspective of the reaction kinetics. A formal mathematical model of the ETD process is introduced and parametrized by intensities of the occurring reactions. Also, we introduce a method to estimate the reaction intensities by solving a nonlinear optimization problem. The presented method proves highly robust to noise on in silico generated data. Moreover, the presented model can explain a considerable amount of experimental results obtained under various experimental settings.


Molecular Species Basic Amino Acid Electron Transfer Dissociation Backbone Cleavage Reaction Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by the National Science Centre grants number 2013/09/B/ST6/01575, 2014/12/W/ST5/00592 and 2015/17/N/ST6/03565, the SBO grant InSPECtor (120025) of the Flemish agency for Innovation by Science and Technology (IWT). The authors thank the Research Foundation – Flanders (FWO) for funding a Ph.D. fellowship (F.L.). The Synapt G2 mass spectrometer is funded by a grant from the Hercules Foundation – Flanders.


  1. 1.
    Syka, J.E.P., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F.: Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. USA 101(26), 9528–9533 (2004)CrossRefGoogle Scholar
  2. 2.
    Zhurov, K.O., Fornelli, L., Wodrich, M.D., Laskay, Ü.A., Tsybin, Y.O.: Principles of electron capture and transfer dissociation mass spectrometry applied to peptide and protein structure analysis. Chem. Soc. Rev. 42(12), 5014–5030 (2013)CrossRefGoogle Scholar
  3. 3.
    Sohn, C.H., Chung, C.K., Yin, S., Ramachandran, P., Loo, J.A., Beauchamp, J.L.: Probing the mechanism of electron capture and electron transfer dissociation using tags with variable electron affinity. J. Am. Chem. Soc. 131(15), 5444–5459 (2009)CrossRefGoogle Scholar
  4. 4.
    Sohn, C.H., Yin, S., Peng, I., Loo, J.A., Beauchamp, J.L.: Investigation of the mechanism of electron capture and electron transfer dissociation of peptides with a covalently attached free radical hydrogen atom scavenger. Int. J. Mass Spectrom. 390, 49–55 (2015)CrossRefGoogle Scholar
  5. 5.
    Mitchell Wells, J., McLuckey, S.A.: Collision induced dissociation (CID) of peptides and proteins. In: Methods in Enzymology, pp. 148–185 (2005)Google Scholar
  6. 6.
    Kim, M.S., Pandey, A.: Electron transfer dissociation mass spectrometry in proteomics. Proteomics 12(4–5), 530–542 (2012)CrossRefGoogle Scholar
  7. 7.
    Zhang, Z.: Prediction of low-energy collision-induced dissociation spectra of peptides. Anal. Chem. 76(14), 3908–3922 (2004)CrossRefGoogle Scholar
  8. 8.
    Zhang, Z.: Prediction of low-energy collision-induced dissociation spectra of peptides with three or more charges. Anal. Chem. 77(19), 6364–6373 (2005)CrossRefGoogle Scholar
  9. 9.
    Wysocki, V.H., Tsaprailis, G., Smith, L.L., Breci, L.A.: Mobile and localized protons: a framework for understanding peptide dissociation. J. Mass Spectrom. 35(12), 1399–1406 (2000)CrossRefGoogle Scholar
  10. 10.
    Fenn, J., Mann, M., Meng, C., Wong, S., Whitehouse, C.: Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926), 64–71 (1989)CrossRefGoogle Scholar
  11. 11.
    Lermyte, F., Konijnenberg, A., Williams, J., Brown, J., Valkenborg, D., Sobott, F.: ETD allows for native surface mapping of a 150 kDa noncovalent complex on a commercial Q-TWIMS-TOF instrument. J. Am. Soc. Mass Spectrom. 25(3), 343–350 (2014)CrossRefGoogle Scholar
  12. 12.
    Lermyte, F., Sobott, F.: Electron transfer dissociation provides higher-order structural information of native and partially unfolded protein complexes. Proteomics 15(16), 2813–2822 (2015)CrossRefGoogle Scholar
  13. 13.
    Lermyte, F., Łącki, M.K., Valkenborg, D., Baggerman, G., Gambin, A., Sobott, F.: Understanding reaction pathways in top-down ETD by dissecting isotope distributions: a mammoth task. Int. J. Mass Spectrom. 390, 146–154 (2015)CrossRefGoogle Scholar
  14. 14.
    Lermyte, F., Williams, J.P., Brown, J.M., Martin, E.M., Sobott, F.: Extensive charge reduction and dissociation of intact protein complexes following electron transfer on a quadrupole-ion mobility-time-of-flight MS. J. Am. Soc. Mass Spectrom. 26(7), 1068–1076 (2015)CrossRefGoogle Scholar
  15. 15.
    Li, W., Song, C., Bailey, D.J., Tseng, G.C., Coon, J.J., Wysocki, V.H.: Statistical analysis of electron transfer dissociation pairwise fragmentation patterns. Anal. Chem. 83(24), 9540–9545 (2011)CrossRefGoogle Scholar
  16. 16.
    Breuker, K., Oh, H., Lin, C., Carpenter, B.K., McLafferty, F.W.: Nonergodic and conformational control of the electron capture dissociation of protein cations. Proc. Natl. Acad. Sci. USA 101(39), 14011–14016 (2004)CrossRefGoogle Scholar
  17. 17.
    Simons, J.: Mechanisms for S-S and \(N-C_\alpha \) bond cleavage in peptide ECD and ETD mass spectrometry. Chem. Phys. Lett. 484(4–6), 81–95 (2010)CrossRefGoogle Scholar
  18. 18.
    Tureček, F., Julian, R.R.: Peptide radicals and cation radicals in the gas phase. Chem. Rev. 113(8), 6691–6733 (2013)CrossRefGoogle Scholar
  19. 19.
    Zhang, Z.: Prediction of electron-transfer/capture dissociation spectra of peptides. Anal. Chem. 82(5), 1990–2005 (2010)CrossRefGoogle Scholar
  20. 20.
    Elias, J.E., Gibbons, F.D., King, O.D., Roth, F.P., Gygi, S.P.: Intensity-based protein identification by machine learning from a library of tandem mass spectra. Nat. Biotechnol. 22(2), 214–219 (2004)CrossRefGoogle Scholar
  21. 21.
    Arnold, R.J., Jayasankar, N., Aggarwal, D., Tang, H., Radivojac, P.: A machine learning approach to predicting peptide fragmentation spectra. In: Pacific Symposium on Biocomputing, pp. 219–230 (2006)Google Scholar
  22. 22.
    Degroeve, S., Martens, L., Jurisica, I.: MS2PIP: a tool for MS/MS peak intensity prediction. Bioinformatics 29(24), 3199–3203 (2013)CrossRefGoogle Scholar
  23. 23.
    Gambin, A., Kluge, B.: Modeling proteolysis from mass spectrometry proteomic data. Fund. Inform. 103(1–4), 89–104 (2010)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Lermyte, F., Łącki, M.K., Valkenborg, D., Gambin, A., Sobott, F.: Conformational space and stability of ETD charge reduction products of ubiquitin. J. Am. Soc. Mass Spectrom. 28(1), 69–76 (2017)CrossRefGoogle Scholar
  25. 25.
    McLuckey, S.A., Stephenson, J.L.: Ion/ion chemistry of high-mass multiply charged ions. Mass Spectrom. Rev. 17(6), 369–407 (1999)CrossRefGoogle Scholar
  26. 26.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  27. 27.
    Lermyte, F., Verschueren, T., Brown, J.M., Williams, J.P., Valkenborg, D., Sobott, F.: Characterization of top-down ETD in a travelling-wave ion guide. Methods 89, 22–29 (2015)CrossRefGoogle Scholar
  28. 28.
    Morrison, L.J., Brodbelt, J.S.: Charge site assignment in native proteins by ultraviolet photodissociation (UVPD) mass spectrometry. Analyst 141(1), 166–176 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Michał Aleksander Ciach
    • 1
    Email author
  • Mateusz Krzysztof Łącki
    • 1
    Email author
  • Błażej Miasojedow
    • 1
  • Frederik Lermyte
    • 2
    • 3
  • Dirk Valkenborg
    • 3
    • 4
  • Frank Sobott
    • 2
  • Anna Gambin
    • 1
  1. 1.Faculty of Mathematics, Informatics and MechanicsUniversity of WarsawWarsawPoland
  2. 2.Biomolecular and Analytical Mass Spectrometry Group, Department of ChemistryUniversity of AntwerpAntwerpBelgium
  3. 3.Centre for ProteomicsUniversity of AntwerpAntwerpBelgium
  4. 4.Interuniversity Institute for Biostatistics and Statistical BioinformaticsHasselt UniversityHasseltBelgium

Personalised recommendations