TEKNO: Preparing Legacy Technical Documents for Semantic Information Systems

  • Sebastian Furth
  • Maximilian Schirm
  • Volker Belli
  • Joachim Baumeister
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10260)

Abstract

Today, service information for technical devices (machines, plants, factories) is stored in large information systems. In case of a problem-situation with the artefact, usually a service technician needs these systems to access relevant information resources in a precise and quick manner. However, semantic information systems demand the resources to be semantically prepared. For new resources, semantic descriptions can be easily created during the authoring process. However, the efficient semantification of legacy documentation is practically unsolved. This paper presents a semi-automated approach to the semantic preparation of legacy documentation in the technical domain. The knowledge-intensive method implements the document structure recovery process that is necessary for a further semantic integration into the system. We claim that the approach is simple and intuitive but yields sufficient results.

Keywords

Document structure recovery Semantic information systems Technical documentation 

Notes

Acknowledgments

The work described in this paper is supported by the German Bundesministerium für Wirtschaft und Energie (BMWi) under the grant ZIM ZF4170601BZ5 “APOSTL: Accessible Performant Ontology Supported Text Learning”.

References

  1. 1.
    Baumeister, J., Seipel, D., Puppe, F.: Incremental development of diagnostic set-covering models with therapy effects. Int. J. Uncert. Fuzz. Knowl.-Based Syst. 11(2), 25–49 (2003). http://ki.informatik.uni-wuerzburg.de/papers/baumeister/2003-baumeister-SCM-ijufks.pdf MathSciNetCrossRefGoogle Scholar
  2. 2.
    Furth, S., Baumeister, J.: Semantification of Large Corpora of Technical Documentation. IGI Global (2016). http://www.igi-global.com/book/enterprise-big-data-engineering-analytics/145468
  3. 3.
    Guha, R., McCool, R., Miller, E.: Semantic search. In: Proceedings of the 12th International Conference on World Wide Web, pp. 700–709. ACM (2003)Google Scholar
  4. 4.
    Lie, H.W., Bos, B., Lilley, C., Jacobs, I.: Cascading style sheets. WWW Consortium, September 1996 (2005)Google Scholar
  5. 5.
    Luong, M.T., Nguyen, T.D., Kan, M.Y.: Logical structure recovery in scholarly articles with rich document features. In: Multimedia Storage and Retrieval Innovations for Digital Library Systems, vol. 270 (2012)Google Scholar
  6. 6.
    Mao, S., Rosenfeld, A., Kanungo, T.: Document structure analysis algorithms: a literature survey. In: Electronic Imaging 2003, pp. 197–207. International Society for Optics and Photonics (2003)Google Scholar
  7. 7.
    Reggia, J.: Computer-assisted medical decision making. In: Schwartz (ed.) Applications of Computers in Medicine, pp. 198–213. IEEE (1982)Google Scholar
  8. 8.
    Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., de Velde, W.V., Wielinga, B.: Knowledge Engineering and Management - The CommonKADS Methodology, 2nd edn. MIT Press, Cambridge (2001)Google Scholar
  9. 9.
    Walsh, N., Muellner, L.: DocBook: The Definitive Guide, vol. 1. O’Reilly Media Inc., Sebastopol (1999)Google Scholar
  10. 10.
    Ziegler, W.: Content Management und Content Delivery. Powered by PI-Class. Tagungsband zur tekom Jahrestagung (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sebastian Furth
    • 1
  • Maximilian Schirm
    • 1
    • 2
  • Volker Belli
    • 1
  • Joachim Baumeister
    • 1
    • 2
  1. 1.denkbares GmbHWürzburgGermany
  2. 2.Institute of Computer ScienceUniversity of WürzburgWürzburgGermany

Personalised recommendations