Discovering Hierarchical Consolidated Models from Process Families

  • Nour AssyEmail author
  • Boudewijn F. van Dongen
  • Wil M. P. van der Aalst
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10253)


Process families consist of different related variants that represent the same process. This might include, for example, processes executed similarly by different organizations or different versions of a same process with varying features. Motivated by the need to manage variability in process families, recent advances in process mining make it possible to discover, from a collection of event logs, a generic process model that explicitly describes the commonalities and differences across variants. However, existing approaches often result in flat complex models where it is hard to obtain a comparative insight into the common and different parts, especially when the family consists of a large number of process variants. This paper presents a decomposition-driven approach to discover hierarchical consolidated process models from collections of event logs. The discovered hierarchy consists of nested process fragments and allows to browse the variability at different levels of abstraction. The approach has been implemented as a plugin in ProM and was evaluated using synthetic and real-life event logs.


Process mining Consolidated process families Hierarchical configurable models Decomposed discovery Configurable fragments 


  1. 1.
    van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  2. 2.
    Reijers, H.A., Mans, R.S., van der Toorn, R.A.: Improved model management with aggregated business process models. Data Knowl. Eng. 68(2), 221–243 (2009)CrossRefGoogle Scholar
  3. 3.
    Dijkman, R.M., La Rosa, M., Reijers, H.A.: Managing large collections of business process models - current techniques and challenges. Comput. Ind. 63(2), 91–97 (2012)CrossRefGoogle Scholar
  4. 4.
    Buijs, J.C.A.M., Dongen, B.F., van der Aalst, W.M.P.: Mining configurable process models from collections of event logs. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 33–48. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40176-3_5 CrossRefGoogle Scholar
  5. 5.
    Li, C., Reichert, M., Wombacher, A.: Mining business process variants: challenges, scenarios, algorithms. Data Knowl. Eng. 70(5), 409–434 (2011)CrossRefGoogle Scholar
  6. 6.
    Milani, F., Dumas, M., Ahmed, N., Matulevicius, R.: Modelling families of business process variants: a decomposition driven method. Inf. Syst. 56, 55–72 (2016)CrossRefGoogle Scholar
  7. 7.
    La Rosa, M., Dumas, M., Uba, R., Dijkman, R.: Business process model merging: an approach to business process consolidation. ACM Trans. Softw. Eng. Methodol. 22(2), 11:1–11:42 (2013)Google Scholar
  8. 8.
    Johnson, R., Pearson, D., Pingali, K.: The program structure tree: computing control regions in linear time. In: Proceedings of the ACM SIGPLAN 1994 Conference on Programming Language Design and Implementation (PLDI), pp. 171–185 (1994)Google Scholar
  9. 9.
    La Rosa, M., van der Aalst, W.M.P., Dumas, M., Milani, F.P.: Business process variability modeling: a survey. ACM Comput. Surv. 50(1), 2:1–2:45 (2017)CrossRefGoogle Scholar
  10. 10.
    Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H., La Rosa, M.: Configurable workflow models. Int. J. Coop. Inf. Syst. 17(2), 177–221 (2008)CrossRefGoogle Scholar
  11. 11.
    La Rosa, M., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Questionnaire-based variability modeling for system configuration. Softw. Syst. Model. 8(2), 251–274 (2009)CrossRefGoogle Scholar
  12. 12.
    Gröner, G., Boskovic, M., Parreiras, F.S., Gasevic, D.: Modeling and validation of business process families. Inf. Syst. 38(5), 709–726 (2013)CrossRefGoogle Scholar
  13. 13.
    La Rosa, M., Dumas, M., Ekanayake, C.C., García-Bañuelos, L., Recker, J., ter Hofstede, A.H.M.: Detecting approximate clones in business process model repositories. Inf. Syst. 49, 102–125 (2015)CrossRefGoogle Scholar
  14. 14.
    García-Bañuelos, L., Dumas, M., La Rosa, M., De Weerdt, J., Ekanayake, C.C.: Controlled automated discovery of collections of business process models. Inf. Syst. 46, 85–101 (2014)CrossRefGoogle Scholar
  15. 15.
    van der Aalst, W.M.P.: Decomposing Petri nets for process mining: a generic approach. Distributed and Parallel Databases 31(4), 471–507 (2013)CrossRefGoogle Scholar
  16. 16.
    Polyvyanyy, A., Smirnov, S., Weske, M.: The triconnected abstraction of process models. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 229–244. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03848-8_16 CrossRefGoogle Scholar
  17. 17.
    Reichert, M., Kolb, J., Bobrik, R., Bauer, T.: Enabling personalized visualization of large business processes through parameterizable views. In: Proceedings of the ACM Symposium on Applied Computing, SAC 2012, Riva, Trento, Italy, 26–30 March 2012, pp. 1653–1660 (2012)Google Scholar
  18. 18.
    Conforti, R., Dumas, M., García-Bañuelos, L., La Rosa, M.: BPMN miner: automated discovery of BPMN process models with hierarchical structure. Inf. Syst. 56, 284–303 (2016)CrossRefGoogle Scholar
  19. 19.
    van Dongen, B.F.: BPI challenge 2015 (2015).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nour Assy
    • 1
    Email author
  • Boudewijn F. van Dongen
    • 1
  • Wil M. P. van der Aalst
    • 1
  1. 1.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations