Advertisement

Characterizing Drift from Event Streams of Business Processes

  • Alireza OstovarEmail author
  • Abderrahmane Maaradji
  • Marcello La Rosa
  • Arthur H. M. ter Hofstede
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10253)

Abstract

Early detection of business process drifts from event logs enables analysts to identify changes that may negatively affect process performance. However, detecting a process drift without characterizing its nature is not enough to support analysts in understanding and rectifying process performance issues. We propose a method to characterize process drifts from event streams, in terms of the behavioral relations that are modified by the drift. The method builds upon a technique for online drift detection, and relies on a statistical test to select the behavioral relations extracted from the stream that have the highest explanatory power. The selected relations are then mapped to typical change patterns to explain the detected drifts. An extensive evaluation on synthetic and real-life logs shows that our method is fast and accurate in characterizing process drifts, and performs significantly better than alternative techniques.

Notes

Acknowledgments

This research is partly funded by the Australian Research Council (grant DP150103356).

References

  1. 1.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  2. 2.
    Accorsi, R., Stocker, T.: Discovering workflow changes with time-based trace clustering. In: Aberer, K., Damiani, E., Dillon, T. (eds.) SIMPDA 2011. LNBIP, vol. 116, pp. 154–168. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34044-4_9 CrossRefGoogle Scholar
  3. 3.
    Armas-Cervantes, A., Baldan, P., Dumas, M., García-Bañuelos, L.: Behavioral comparison of process models based on canonically reduced event structures. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 267–282. Springer, Cham (2014). doi: 10.1007/978-3-319-10172-9_17 Google Scholar
  4. 4.
    van Beest, N.R.T.P., Dumas, M., García-Bañuelos, L., La Rosa, M.: Log delta analysis: interpretable differencing of business process event logs. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 386–405. Springer, Cham (2015). doi: 10.1007/978-3-319-23063-4_26 CrossRefGoogle Scholar
  5. 5.
    Bose, R.P.J.C., van der Aalst, W.M.P., Zliobaite, I., Pechenizkiy, M.: Dealing with concept drifts in process mining. IEEE Trans. NNLS 25, 154–171 (2014)Google Scholar
  6. 6.
    Carmona, J., Gavaldà, R.: Online techniques for dealing with concept drift in process mining. In: Hollmén, J., Klawonn, F., Tucker, A. (eds.) IDA 2012. LNCS, vol. 7619, pp. 90–102. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34156-4_10 CrossRefGoogle Scholar
  7. 7.
    Conforti, R., Dumas, M., García-Bañuelos, L., Rosa, M.L.: BPMN miner: Automated discovery of BPMN process models with hierarchical structure. Inf. Syst. 56, 284–303 (2016)CrossRefGoogle Scholar
  8. 8.
    Conforti, R., La Rosa, M., ter Hofstede, A.H.: Filtering out infrequent behavior from business process event logs. IEEE Trans. Knowl. Data Eng. 29, 300–314 (2016)CrossRefGoogle Scholar
  9. 9.
    Frank, E., Witten, I.H.: Using a permutation test for attribute selection in decision trees. In: International Conference on Machine Learning. Morgan Kaufmann (1998)Google Scholar
  10. 10.
    Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Computing Surveys (CSUR) 46, 44 (2014)CrossRefzbMATHGoogle Scholar
  11. 11.
    Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. (TOIS) 20, 422–446 (2002)CrossRefGoogle Scholar
  12. 12.
    Leemans, S.J.J., Fahland, D., Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38697-8_17 CrossRefGoogle Scholar
  13. 13.
    Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Fast and accurate business process drift detection. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 406–422. Springer, Cham (2015). doi: 10.1007/978-3-319-23063-4_27 CrossRefGoogle Scholar
  14. 14.
    Martjushev, J., Bose, R.P.J.C., van der Aalst, W.M.P.: Change point detection and dealing with gradual and multi-order dynamics in process mining. In: Matulevičius, R., Dumas, M. (eds.) BIR 2015. LNBIP, vol. 229, pp. 161–178. Springer, Cham (2015). doi: 10.1007/978-3-319-21915-8_11 CrossRefGoogle Scholar
  15. 15.
    de Medeiros, A.A., van Dongen, B.F., van der Aalst, W.M.P., Weijters, A.: Process mining: extending the \(\alpha \)-algorithm to mine short loops. Technical report (2004)Google Scholar
  16. 16.
    Menard, S.: Applied Logistic Regression Analysis. Sage, Thousand Oaks (2002)CrossRefGoogle Scholar
  17. 17.
    Ostovar, A., Maaradji, A., La Rosa, M., ter Hofstede, A.H.M., van Dongen, B.F.V.: Detecting drift from event streams of unpredictable business processes. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 330–346. Springer, Cham (2016). doi: 10.1007/978-3-319-46397-1_26 CrossRefGoogle Scholar
  18. 18.
    Pratt, K.B., Tschapek, G.: Visualizing concept drift. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2003)Google Scholar
  19. 19.
    Tax, N., Sidorova, N., van der Aalst, W.M., Haakma, R.: Heuristic approaches for generating local process models through log projections. In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM) (2016)Google Scholar
  20. 20.
    Webb, G.I., Hyde, R., Cao, H., Nguyen, H.L., Petitjean, F.: Characterizing concept drift. Data Mining Knowl. Discov. 30, 964–994 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features-enhancing flexibility in process-aware information systems. DKE 66, 438–466 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alireza Ostovar
    • 1
    Email author
  • Abderrahmane Maaradji
    • 1
  • Marcello La Rosa
    • 1
  • Arthur H. M. ter Hofstede
    • 1
  1. 1.Queensland University of TechnologyBrisbaneAustralia

Personalised recommendations