Advertisement

Discovering Causal Factors Explaining Business Process Performance Variation

  • Bart F. A. HompesEmail author
  • Abderrahmane Maaradji
  • Marcello La Rosa
  • Marlon Dumas
  • Joos C. A. M. Buijs
  • Wil M. P. van der Aalst
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10253)

Abstract

Business process performance may be affected by a range of factors, such as the volume and characteristics of ongoing cases or the performance and availability of individual resources. Event logs collected by modern information systems provide a wealth of data about the execution of business processes. However, extracting root causes for performance issues from these event logs is a major challenge. Processes may change continuously due to internal and external factors. Moreover, there may be many resources and case attributes influencing performance. This paper introduces a novel approach based on time series analysis to detect cause-effect relations between a range of business process characteristics and process performance indicators. The scalability and practical relevance of the approach has been validated by a case study involving a real-life insurance claims handling process.

Keywords

Process mining Performance analysis Root cause analysis 

Notes

Acknowledgments

This research is funded by the Australian Research Council (grant DP150103356), the Estonian Research Council (grant IUT20-55) and the RISE_BPM project (H2020 Marie Curie Program, grant 645751).

References

  1. 1.
    van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdisc. Rev.: Data Min. Knowl. Discov. 2(2), 182–192 (2012)Google Scholar
  2. 2.
    González, L.S., Rubio, F.G., González, F.R., Velthuis, M.P.: Measurement in business processes: a systematic review. Bus. Process Manag. J. 16(1), 114–134 (2010)CrossRefGoogle Scholar
  3. 3.
    Granger, C.W.J.: Some recent development in a concept of causality. J. Econometrics 39(1), 199–211 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Kamiński, M., Ding, M., Truccolo, W.A., Bressler, S.L.: Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol. Cybern. 85(2), 145–157 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Roebroeck, A., Formisano, E., Goebel, R.: Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25(1), 230–242 (2005)CrossRefGoogle Scholar
  6. 6.
    Pika, A., van der Aalst, W.M.P., Fidge, C.J., ter Hofstede, A.H.M., Wynn, M.T.: Predicting deadline transgressions using event logs. In: Rosa, M., Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132, pp. 211–216. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36285-9_22 CrossRefGoogle Scholar
  7. 7.
    Suriadi, S., Ouyang, C., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Root cause analysis with enriched process logs. In: Rosa, M., Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132, pp. 174–186. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36285-9_18 CrossRefGoogle Scholar
  8. 8.
    de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Inf. Syst. 56, 235–257 (2016)CrossRefGoogle Scholar
  9. 9.
    Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: A recommendation system for predicting risks across multiple business process instances. Decis. Support Syst. 69(1), 1–19 (2015)CrossRefGoogle Scholar
  10. 10.
    Ghattas, J., Soffer, P., Peleg, M.: Improving business process decision making based on past experience. Decis. Support Syst. 59, 93–107 (2014)CrossRefGoogle Scholar
  11. 11.
    van der Aalst, W.M.P.: Process cubes: slicing, dicing, rolling up and drilling down event data for process mining. In: Song, M., Wynn, M.T., Liu, J. (eds.) AP-BPM 2013. LNBIP, vol. 159, pp. 1–22. Springer, Cham (2013). doi: 10.1007/978-3-319-02922-1_1 CrossRefGoogle Scholar
  12. 12.
    Vogelgesang, T., Appelrath, H.-J.: PMCube: a data-warehouse-based approach for multidimensional process mining. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 167–178. Springer, Cham (2016). doi: 10.1007/978-3-319-42887-1_14 CrossRefGoogle Scholar
  13. 13.
    Tan, S., Chan, T.: Defining and conceptualizing actionable insight: a conceptual framework for decision-centric analytics. In: Australasian Conference on Information Systems (2015)Google Scholar
  14. 14.
    Hompes, B.F.A., Buijs, J.C.A.M., van der Aalst, W.M.P.: A generic framework for context-aware process performance analysis. In: Debruyne, C., et al. (eds.) OTM 2016. LNCS, vol. 10033, pp. 300–317. Springer, Cham (2016). doi: 10.1007/978-3-319-48472-3_17 CrossRefGoogle Scholar
  15. 15.
    Bollen, K.A.: Structural Equations with Latent Variables. Wiley, Hoboken (2014)zbMATHGoogle Scholar
  16. 16.
    Jensen, F.V.: An Introduction to Bayesian networks, vol. 210. UCL Press, London (1996)Google Scholar
  17. 17.
    Yu, J., Smith, V.A., Wang, P.P., Hartemink, A.J., Jarvis, E.D.: Advances to bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20(18), 3594–3603 (2004)CrossRefGoogle Scholar
  18. 18.
    Shimizu, S., Hoyer, P.O., Hyvarinen, A., Kerminen, A.: A linear non-gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7, 2003–2030 (2006)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Richardson, T.: A polynomial-time algorithm for deciding Markov equivalence of directed cyclic graphical models. In: Proceedings of the Twelfth International Conference on Uncertainty in Artificial Intelligence, pp. 462–469. Morgan Kaufmann Publishers Inc., Burlington (1996)Google Scholar
  20. 20.
    Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3), 424 (1969)CrossRefGoogle Scholar
  21. 21.
    Dahlhaus, R., Eichler, M.: Causality and graphical models in time series analysis. In: Oxford Statistical Science Series, pp. 115–137 (2003)Google Scholar
  22. 22.
    van der Aalst, W.M.P.: Re-engineering knock-out processes. Decis. Support Syst. 30(4), 451–468 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Bart F. A. Hompes
    • 1
    • 2
    Email author
  • Abderrahmane Maaradji
    • 3
  • Marcello La Rosa
    • 3
  • Marlon Dumas
    • 4
  • Joos C. A. M. Buijs
    • 1
  • Wil M. P. van der Aalst
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Philips ResearchEindhovenThe Netherlands
  3. 3.Queensland University of TechnologyBrisbaneAustralia
  4. 4.University of TartuTartuEstonia

Personalised recommendations