Impact of Protests in the Number of Smart Devices in Streets: A New Approach to Analyze Protesters Behavior

  • Antonio Fernández-Ares
  • Maria Garcia-Arenas
  • Pedro A. Castillo
  • Juan J. Merelo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10268)

Abstract

Measuring protests is an area of interest, as the amount of protesters is proportional to the success of the protest. Nevertheless, current methods of measurement are in counting heads in photos. In this paper using smart devices detection in a protest to measure the amount of people in the journey it is proposed. In order to do so, the Mobywit System is used, having been employed with success in the monitorization of vehicles and persons in Smart Cities scope. This system tracks the smart devices using their WiFi communications. Gathered data measures the number smart devices taking part in the protest, and so the number of participants.

Keywords

Smart cities People monitoring People tracking Wifi monitoring Protests 

References

  1. 1.
    Atolon, G.: Method lynce for crowd measurement (2011). https://web.archive.org/web/20110915235904/http://lynce.es/es/metodo.php
  2. 2.
    Botta, F., Moat, H.S., Preis, T.: Quantifying crowd size with mobile phone and twitter data. R. Soc. Open Sci. 2(5), 150162 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Castillo, P., Fernández-Ares, A., García-Fernández, P., García-Sánchez, P., Arenas, M., Mora, A., Rivas, V., Asensio, J., Romero, G., Merelo, J.: Studying individualized transit indicators using a new low-cost information system. In: Handbook of Research on Embedded Systems Design, Advances in Systems Analysis, Software Engineering, and High Performance Computing. Industry and Research Perspectives on Embedded System Design, pp. 388–407. IGI Global (2014)Google Scholar
  4. 4.
    Celik, H., Hanjalic, A., Hendriks, E.: Towards a robust solution to people counting. In: 2006 IEEE International Conference on Image Processing, pp. 2401–2404 (2006)Google Scholar
  5. 5.
    Fierro, G., Rehmane, O., Krioukov, A., Culler, D.: Zone-level occupancy counting with existing infrastructure. In: Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings (BuildSys 2012), NY, USA, pp. 205–206 (2012). http://doi.acm.org/10.1145/2422531.2422572
  6. 6.
    González-Bailón, S., Borge-Holthoefer, J., Moreno, Y.: Broadcasters and hidden influentials in online protest diffusion. Am. Behav. Sci. 57(7), 943–965 (2013)CrossRefGoogle Scholar
  7. 7.
    Hashimoto, K., Morinaka, K., Yoshiike, N., Kawaguchi, C., Matsueda, S.: People count system using multi-sensing application. In: 1997 International Conference on Solid State Sensors and Actuators, TRANSDUCERS 1997, Chicago, vol. 2, pp. 1291–1294, June 1997Google Scholar
  8. 8.
    Hashimoto, K., Kawaguchi, C., Matsueda, S., Morinaka, K., Yoshiike, N.: People-counting system using multisensing application. Sensors Actuators A Phys. 66(1–3), 50–55 (1998). http://www.sciencedirect.com/science/article/pii/S0924424797017159
  9. 9.
    Kahle, D., Wickham, H.: ggmap: spatial visualization with ggplot2. R J. 5(1), 144–161 (2013). http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
  10. 10.
    Kostakos, V.: Using bluetooth to capture passenger trips on public transport buses. arXiv preprint (2008). arXiv:0806.0874
  11. 11.
    McPhail, C., McCarthy, J.: Who counts and how: estimating the size of protests. Contexts 3(3), 12–18 (2004)CrossRefGoogle Scholar
  12. 12.
    Morrison, A., Bell, M., Chalmers, M.: Visualisation of spectator activity at stadium events. In: 2009 13th International Conference on Information Visualisation, pp. 219–226. IEEE (2009)Google Scholar
  13. 13.
    Nicolai, T., Kenn, H.: About the relationship between people and discoverable bluetooth devices in urban environments. In: Proceedings of the 4th International Conference on Mobile Technology, Applications, and Systems and the 1st International Symposium on Computer Human Interaction in Mobile Technology, pp. 72–78. ACM (2007)Google Scholar
  14. 14.
    Schofield, A., Mehta, P., Stonham, T.: A system for counting people in video images using neural networks to identify the background scene. Pattern Recognit. 29(8), 1421–1428 (1996). http://www.sciencedirect.com/science/article/pii/0031320395001638
  15. 15.
    Stanton, W.J.: Fundamentals of Marketing. McGraw-Hill, New York (1967)Google Scholar
  16. 16.
    Xi, W., Zhao, J., Li, X.Y., Zhao, K., Tang, S., Liu, X., Jiang, Z.: Electronic frog eye: counting crowd using wifi. In: INFOCOM, 2014 Proceedings IEEE, pp. 361–369, April 2014Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Antonio Fernández-Ares
    • 1
  • Maria Garcia-Arenas
    • 1
  • Pedro A. Castillo
    • 1
  • Juan J. Merelo
    • 1
  1. 1.ETSIIT-CITICUniversity of GranadaGranadaSpain

Personalised recommendations