Advertisement

Observation of Air Pollution over China Using the IASI Thermal Infrared Space Sensor

  • Cathy ClerbauxEmail author
  • Sophie Bauduin
  • Anne Boynard
  • Lieven Clarisse
  • Pierre Coheur
  • Maya George
  • Juliette Hadji-Lazaro
  • Daniel Hurtmans
  • Sarah Safieddine
  • Martin Van Damme
  • Simon Whitburn
Chapter
Part of the ISSI Scientific Report Series book series (ISSI, volume 16)

Abstract

In this chapter we describe what is achievable in terms of pollutant tracking from space using observations provided by thermal infrared remote sensors. After a general introduction on infrared remote sensing, we exploit the data provided by the Infrared Atmospheric Sounding Interferometer (IASI) missions onboard the Metop series of satellite to illustrate pollution detection at various spatial and temporal scales. Then, we focus on air pollution over China and discuss three case studies involving different pollutants. The first example discusses the geophysical conditions for detection of ammonia (NH3) and sulfur dioxide (SO2), both precursors of particulate matter (PM). The second case illustrates the seasonal variation of ozone (O3), in particular during the monsoon period. The third case shows the local accumulation of enhanced levels of carbon monoxide (CO) when pollution episodes occur.

Keywords

IASI Infrared remote sensing Spectroscopy Air pollution 

Notes

Acknowledgments

The IASI mission is a joint mission of Eumetsat and the Centre National d’Etudes Spatiales (CNES, France). The IASI L1 data are distributed in near real time by Eumetsat through the Eumetcast system distribution. The authors acknowledge the AERIS French atmospheric database for providing the IASI data. The French scientists are grateful to CNES for scientific collaboration and financial support. The Belgian scientists are grateful to F.R.S.-FNRS and the Belgian State Federal Office for Scientific, Technical and Cultural Affairs and the European Space Agency (ESA-Prodex arrangements) for supporting their research.

References

  1. Bauduin, S., Clarisse, L., Clerbaux, C., Hurtmans, D., & Coheur, P.-F. (2014). IASI observations of sulfur dioxide (SO2) in the boundary layer of Norilsk. Journal of Geophysical Research – Atmospheres, 119, 4253–4263. doi: 10.1002/2013JD021405.CrossRefGoogle Scholar
  2. Bauduin, S., Clarisse, L., Hadji-Lazaro, J., Theys, N., Clerbaux, C., & Coheur, P.-F. (2016). Retrieval of near-surface sulfur dioxide (SO2) concentrations at a global scale using IASI satellite observations. Atmospheric Measurement Techniques, 9, 721–740. doi: 10.5194/amt-9-721-2016.CrossRefGoogle Scholar
  3. Boynard, A., Clerbaux, C., Clarisse, L., Safieddine, S., Pommier, M., Van Damme, M., Bauduin, S., Oudot, C., Hadji-Lazaro, J., Hurtmans, D., & Coheur, P.-F. (2014). First simultaneous space measurements of atmospheric pollutants in the boundary layer from IASI: A case study in the North China Plain. Geophysical Research Letters, 41, 645–651. doi: 10.1002/2013GL058333.CrossRefGoogle Scholar
  4. Boynard, A., Hurtmans, D., Koukouli, M. E., Goutail, F., Bureau, J., Safieddine, S., Lerot, C., Hadji-Lazaro, J., Wespes, C., Pommereau, J.-P., Pazmino, A., Zyrichidou, I., Balis, D., Barbe, A., Mikhailenko, S. N., Loyola, D., Valks, P., Van Roozendael, M., Coheur, P.-F., & Clerbaux, C. (2016). Seven years of IASI ozone retrievals from FORLI: Validation with independent total column and vertical profile measurements. Atmospheric Measurement Techniques, 9, 4327–4353. doi: 10.5194/amt-9-4327-2016.CrossRefGoogle Scholar
  5. Carboni, E., Grainger, R., Walker, J., Dudhia, A., & Siddans, R. (2012). A new scheme for sulphur dioxide retrieval from IASI measurements: Application to the Eyjafjallajökull eruption of April and May 2010. Atmospheric Chemistry and Physics, 12, 11417–11434. doi: 10.5194/acp-12-11417-2012.CrossRefGoogle Scholar
  6. Cayla, F. R. (1993). IASI infrared interferometer for operations and research. In A. Chedin, M. T. Chahine, & N. A. Scott (Eds.), High spectral resolution infrared remote sensing for earth’s weather and climate studies, NATO ASI Series (Vol. I 9). Berlin: Springer.Google Scholar
  7. Clarisse, L., Clerbaux, C., Dentener, F., Hurtmans, D., & Coheur, P.-F. (2009). Global ammonia distribution derived from infrared satellite observations. Nature Geoscience, 2, 479–483. doi: 10.1038/ngeo551.CrossRefGoogle Scholar
  8. Clarisse, L., R’Honi, Y., Coheur, P.-F., Hurtmans, D., & Clerbaux, C. (2011). Thermal infrared nadir observations of 24 atmospheric gases. Geophysical Research Letters, 38, L10802. doi: 10.1029/2011GL047271.Google Scholar
  9. Clerbaux, C., & Crevoisier, C. (2013). New directions: Infrared remote sensing of the troposphere from satellite: Less, but better. Atmospheric Environment, 72, 24–26. doi: 10.1016/j.atmosenv.2013.01.057.CrossRefGoogle Scholar
  10. Clerbaux, C., Boynard, A., Clarisse, L., George, M., Hadji-Lazaro, J., Herbin, H., Hurtmans, D., Pommier, M., Razavi, A., Turquety, S., Wespes, C., & Coheur, P.-F. (2009). Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmospheric Chemistry and Physics, 9, 6041–6054. doi: 10.5194/acp-9-6041-2009.CrossRefGoogle Scholar
  11. Clerbaux, C., Hadji-Lazaro, J., Turquety, S., George, M., Boynard, A., Pommier, M., Safieddine, S., Coheur, P.-F., Hurtmans, D., Clarisse, L., & Van Damme, M. (2015). Tracking pollutants from space: Eight years of IASI satellite observation. Comptes Rendus Geoscience, 347, 134–144. doi: 10.1016/j.crte.2015.06.001.CrossRefGoogle Scholar
  12. Coheur, P.-F., Clarisse, L., Turquety, S., Hurtmans, D., & Clerbaux, C. (2009). IASI measurements of reactive trace species in biomass burning plumes. Atmospheric Chemistry and Physics, 9, 5655–5667. doi: 10.5194/acp-9-5655-2009.CrossRefGoogle Scholar
  13. Cooper, O. R., Parrish, D. D., Ziemke, J., Balashov, N. V., Cupeiro, M., Galbally, I. E., Gilge, S., Horowitz, L., Jensen, N. R., Lamarque, J.-F., Naik, V., Oltmans, S. J., Schwab, J., Shindell, D. T., Thompson, A. M., Thouret, V., Wang, Y., & Zbinden, R. M. (2014). Global distribution and trends of tropospheric ozone: An observation-based review. Element Science Anthropology, 2, 000029. doi: 10.12952/journal.elementa.000029.CrossRefGoogle Scholar
  14. Crevoisier, C., Clerbaux, C., Guidard, V., Phulpin, T., Armante, R., Barret, B., Camy-Peyret, C., Chaboureau, J.-P., Coheur, P.-F., Crépeau, L., Dufour, G., Labonnote, L., Lavanant, L., Hadji-Lazaro, J., Herbin, H., Jacquinet-Husson, N., Payan, S., Péquignot, E., Pierangelo, C., Sellitto, P., & Stubenrauch, C. (2014). Towards IASI-New Generation (IASI-NG): Impact of improved spectral resolution and radiometric noise on the retrieval of thermodynamic, chemistry and climate variables. Atmospheric Measurement Techniques, 7, 4367–4385. doi: 10.5194/amt-7-4367-2014.CrossRefGoogle Scholar
  15. Dufour, G., Eremenko, M., Orphal, J., & Flaud, J.-M. (2010). IASI observations of seasonal and day-to-day variations of tropospheric ozone over three highly populated areas of China: Beijing, Shanghai, and Hong Kong. Atmospheric Chemistry and Physics, 10, 3787–3801. doi: 10.5194/acp-10-3787-2010.CrossRefGoogle Scholar
  16. George, M., Clerbaux, C., Bouarar, I., Coheur, P.-F., Deeter, M. N., Edwards, D. P., Francis, G., Gille, J. C., Hadji-Lazaro, J., Hurtmans, D., Inness, A., Mao, D., & Worden, H. M. (2015). An examination of the long-term CO records from MOPITT and IASI: Comparison of retrieval methodology. Atmospheric Measurement Techniques, 8, 4313–4328. doi: 10.5194/amt-8-4313-2015.CrossRefGoogle Scholar
  17. Hilton, F., Armante, R., August, T., Barnet, C., Bouchard, A., Camy-Peyret, C., Capelle, V., Clarisse, L., Clerbaux, C., Coheur, P.-F., Collard, A., Crevoisier, C., Dufour, G., Edwards, D., Faijan, F., Fourrié, N., Gambacorta, A., Goldberg, M., Guidard, V., Hurtmans, D., Illingworth, S., Jacquinet-Husson, N., Kerzenmacher, T., Klaes, D., Lavanant, L., Masiello, G., Matricardi, M., McNally, A., Newman, S., Pavelin, E., Payan, S., Péquignot, E., Peyridieu, S., Phulpin, T., Remedios, J., Schlüssel, P., Serio, C., Strow, L., Stubenrauch, C., Taylor, J., Tobin, D., Walter, W., & Zhou, D. (2012). Hyperspectral earth observation from IASI: Five years of accomplishments. Bulletin of the American Meteorological Society, 93(3), 347–370. doi: 10.1175/BAMS-D-11-00027.1.CrossRefGoogle Scholar
  18. Honoré, C., Rouïl, L., Vautard, R., Beekmann, M., Bessagnet, B., Dufour, A., Elichegaray, C., Flaud, J.-M., Malherbe, L., Meleux, F., Menut, L., Martin, D., Peuch, A., Peuch, V.-H., & Poisson, N. (2008). Predictability of European air quality: Assessment of 3 years of operational forecasts and analyses by the PREV’AIR system. Journal of Geophysical Research, 113, D04301. doi: 10.1029/2007JD008761.CrossRefGoogle Scholar
  19. Hurtmans, D., Coheur, P.-F., Wespes, C., Clarisse, L., Scharf, O., Clerbaux, C., Hadji-Lazaro, J., George, M., & Turquety, S. (2012). FORLI radiative transfer and retrieval code for IASI. Journal of Quantitative Spectroscopy and Radiative Transfer, 113(11), 1391–1408. doi: 10.1016/j.jqsrt.2012.02.036.CrossRefGoogle Scholar
  20. Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525, 367–371. doi: 10.1038/nature15371.CrossRefGoogle Scholar
  21. R’Honi, Y., Clarisse, L., Clerbaux, C., Hurtmans, D., Duflot, V., Turquety, S., Ngadi, Y., & Coheur, P.-F. (2013). Exceptional emissions of NH3 and HCOOH in the 2010 Russian wildfires. Atmospheric Chemistry and Physics, 13, 4171–4181. doi: 10.5194/acp-13-4171-2013.CrossRefGoogle Scholar
  22. Rodgers, C. D. (2000). Inverse methods for atmospheric sounding: Theory and practice. World Scientific Series on Atmospheric, Oceanic and Planetary Physics, 2. Hackensack.Google Scholar
  23. Safieddine, S., Clerbaux, C., George, M., Hadji-Lazaro, J., Hurtmans, D., Coheur, P.-F., Wespes, C., Loyola, D., Valks, P., & Hao, N. (2013). Tropospheric ozone and nitrogen dioxide measurements in urban and rural regions as seen by IASI and GOME-2. Journal of Geophysical Research – Atmospheres, 118, 10555–10566. doi: 10.1002/jgrd.50669.CrossRefGoogle Scholar
  24. Safieddine, S., Boynard, A., Hao, N., Huang, F., Wang, L., Ji, D., Barret, B., Ghude, S. D., Coheur, P.-F., Hurtmans, D., & Clerbaux, C. (2016). Tropospheric ozone variability during the East Asian summer monsoon as observed by satellite (IASI), aircraft (MOZAIC) and ground stations. Atmospheric Chemistry and Physics, 16, 10489–10500. doi: 10.5194/acp-16-10489-2016.CrossRefGoogle Scholar
  25. Van Damme, M., Clarisse, L., Heald, C. L., Hurtmans, D., Ngadi, Y., Clerbaux, C., Dolman, A. J., Erisman, J. W., & Coheur, P.-F. (2014). Global distributions, time series and error characterization of atmospheric ammonia (NH3) from IASI satellite observations. Atmospheric Chemistry and Physics, 14, 2905–2922. doi: 10.5194/acp-14-2905-2014.Google Scholar
  26. Walker, J. C., Dudhia, A., & Carboni, E. (2011). An effective method for the detection of trace species demonstrated using the MetOp infrared atmospheric sounding interferometer. Atmospheric Measurement Techniques, 4, 1567–1580. doi: 10.5194/amt-4-1567-2011.CrossRefGoogle Scholar
  27. Whitburn, S., Van Damme, M., Clarisse, L., Turquety, S., Clerbaux, C., Coheur, P.-F. (2016a). Peat fires doubled annual ammonia emissions in Indonesia during the 2015 El Niño. Geophysical Research Letters, 43. doi: 10.1002/2016GL070620.
  28. Whitburn, S., Van Damme, M., Clarisse, L., Bauduin, S., Heald, C. L., Hadji-Lazaro, J., Hurtmans, D., Zondlo, M. A., Clerbaux, C., & Coheur, P.-F. (2016b). A flexible and robust neural network IASI-NH3 retrieval algorithm. Journal of Geophysical Research-Atmospheres, 121(11), 6581–6599. doi: 10.1002/2016JD024828.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Cathy Clerbaux
    • 1
    • 2
    Email author
  • Sophie Bauduin
    • 2
  • Anne Boynard
    • 1
  • Lieven Clarisse
    • 2
  • Pierre Coheur
    • 2
  • Maya George
    • 1
  • Juliette Hadji-Lazaro
    • 1
  • Daniel Hurtmans
    • 2
  • Sarah Safieddine
    • 1
  • Martin Van Damme
    • 2
  • Simon Whitburn
    • 2
  1. 1.LATMOS/IPSL, UPMC Sorbonne Universités, UVSQ, CNRSParisFrance
  2. 2.Spectroscopie de l’Atmosphère, Chimie Quantique et PhotophysiqueUniversité libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations