A Rehabilitation System for Post-operative Heart Surgery

  • Giuseppe Caggianese
  • Mariaconsiglia Calabrese
  • Vincenzo De Maio
  • Giuseppe De Pietro
  • Armando Faggiano
  • Luigi Gallo
  • Giovanna Sannino
  • Carmine Vecchione
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 76)


Supervised exercise programs are an important aspect of the rehabilitation process of patients after heart surgery. A large number of factors must be taken into account before implementing a rehabilitation program. These mainly consist in the patient’s cognitive and physical capabilities after the operation and the expectations of recovery. A rehabilitation program should also be designed in relation to the stage of the healing process, with the therapist selecting the best sequence of exercises while taking into account the most appropriate effort level for the patient. This paper describes a customizable rehabilitation system for the early post-operative period, useful for the performance of an assessment of the patients, through an evaluation of their cognitive and motor abilities, and for a dynamic personalization of the therapy sessions focused on patient needs.


Rehabilitation Telemonitoring Microsoft kinect Unity 3D Serious game 



This work has been supported by the project “eHealthNet: Ecosistema software per la Sanità Elettronica” (PON03PE_00128_1).


  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Adinolfi, F., Caggianese, G., Gallo, L., Grosso, J., Infarinato, F., Marchese, N., Sale, P., Spaltro, E.: SmartCARE—an ICT platform in the domain of stroke pathology to manage rehabilitation treatment and telemonitoring at home. In: Pietro, G., Gallo, L., Howlett, R.J., Jain, L.C. (eds.) Intelligent Interactive Multimedia Systems and Services 2016. SIST, vol. 55, pp. 39–49. Springer, Cham (2016). doi: 10.1007/978-3-319-39345-2_4 CrossRefGoogle Scholar
  5. 5.
    Amato, F., Colace, F., Greco, L., Moscato, V., Picariello, A.: Semantic processing of multimedia data for e-government applications. J. Vis. Lang. Comput. 32, 35–41 (2016)CrossRefGoogle Scholar
  6. 6.
    Amato, F., Moscato, F.: A model driven approach to data privacy verification in e-health systems. Trans. Data Priv. 8(3), 273–296 (2015)Google Scholar
  7. 7.
    Amato, F., Moscato, F.: Pattern-based orchestration and automatic verification of composite cloud services. Comput. Electr. Eng. 56, 842–853 (2016)CrossRefGoogle Scholar
  8. 8.
    Amato, F., Moscato, F.: Exploiting cloud and workflow patterns for the analysis of composite cloud services. Future Gener. Comput. Syst. 67, 255–265 (2017)CrossRefGoogle Scholar
  9. 9.
    ATS Committee on Prociency Standards for Clinical Pulmonary Function Laboratories, et al.: ATS statement: guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 166(1), 111 (2002)Google Scholar
  10. 10.
    Bao, X., Mao, Y., Lin, Q., Qiu, Y., Chen, S., Li, L., et al.: Mechanism of kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke. Neural Regener. Res. 8(31), 2904 (2013)Google Scholar
  11. 11.
    Bogdanova, Y., Yee, M.K., Ho, V.T., Cicerone, K.D.: Computerized cognitive rehabilitation of attention and executive function in acquired brain injury: a systematic review. J. Head Trauma Rehabil. 31(6), 419–433 (2016)CrossRefGoogle Scholar
  12. 12.
    Brancati, N., Caggianese, G., Frucci, M., Gallo, L., Neroni, P.: Touchless target selection techniques for wearable augmented reality systems. In: Damiani, E., Howlett, R.J., Jain, L.C., Gallo, L., De Pietro, G. (eds.) Intelligent Interactive Multimedia Systems and Services. SIST, vol. 40, pp. 1–9. Springer, Cham (2015). doi: 10.1007/978-3-319-19830-9_1 Google Scholar
  13. 13.
    Della Vecchia, G., Gallo, L., Esposito, M., Coronato, A.: An infrastructure for smart hospitals. Multimed. Tools Appl. 59(1), 341–362 (2012)CrossRefGoogle Scholar
  14. 14.
    Essmaeel, K., Gallo, L., Damiani, E., De Pietro, G., Dipanda, A.: Comparative evaluation of methods for filtering kinect depth data. Multimed. Tools Appl. 74(17), 7331–7354 (2015)CrossRefGoogle Scholar
  15. 15.
    Hietanen, E.: Cardiovascular responses to static exercise. Scand. J. Work Environ. Health 10, 397–402 (1984)CrossRefGoogle Scholar
  16. 16.
    Karashanov, A., Manolova, A., Neshov, N.: Application for hand rehabilitation using leap motion sensor based on a gamification approach. Int. J. Adv. Res. Sci. Eng. 5(2), 61–69 (2016)Google Scholar
  17. 17.
    Mitchell, J.H., Wildenthal, K.: Static (isometric) exercise and the heart: physiological and clinical considerations. Ann. Rev. Med. 25(1), 369–381 (1974)CrossRefGoogle Scholar
  18. 18.
    Mousavi Hondori, H., Khademi, M.: A review on technical and clinical impact of microsoft kinect on physical therapy and rehabilitation. J. Med. Eng. 2014, 846514 (2014)CrossRefGoogle Scholar
  19. 19.
    Rego, P.A., Moreira, P.M., Reis, L.P.: Natural user interfaces in serious games for rehabilitation. In: 6th Iberian Conference on Information Systems and Technologies, pp. 1–4 (2011)Google Scholar
  20. 20.
    Ren, W., Pu, F., Fan, X., Li, S., Sun, L., Li, D., et al.: Kinect-based skeleton-matching feedback for motor rehabilitation: transient performance effect of shoulder training. J. Mech. Med. Biol. 16(03), 1650037 (2016)CrossRefGoogle Scholar
  21. 21.
    Sannino, G., De Pietro, G.: An evolved ehealth monitoring system for a nuclear medicine department. In: Developments in E-systems Engineering, pp. 3–6 (2011)Google Scholar
  22. 22.
    Shapii, A., Mat Zin, N.A., Elaklouk, A.M.: A game system for cognitive rehabilitation. BioMed Res. Int. 2015, 493562 (2015)Google Scholar
  23. 23.
    Standen, P., Threapleton, K., Richardson, A., Connell, L., Brown, D., Battersby, S., Platts, F., Burton, A.: A low cost virtual reality system for home based rehabilitation of the upper limb following stroke: a randomised controlled feasibility trial. Clin. Rehabil. 31, 340–350 (2016)CrossRefGoogle Scholar
  24. 24.
    Stephens, R.S., Shah, A.S., Whitman, G.J.: Lung injury and acute respiratory distress syndrome after cardiac surgery. Ann. Thoracic Surg. 95(3), 1122–1129 (2013)CrossRefGoogle Scholar
  25. 25.
    Sáenz-de Urturi, Z., Zapirain, B.G., Zorrilla, A.M.: Kinect-based virtual game for motor and cognitive rehabilitation: a pilot study for older adults. In: 8th International Conference on Pervasive Computing Technologies for Healthcare, pp. 262–265 (2014)Google Scholar
  26. 26.
    Zephyr Techonology: New Zephyr BioPatch Monitoring Device for Human Performance.
  27. 27.
    Zheng, H., et al.: SMART rehabilitation: implementation of ICT platform to support home-based stroke rehabilitation. In: Stephanidis, C. (ed.) UAHCI 2007. LNCS, vol. 4554, pp. 831–840. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-73279-2_93 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Giuseppe Caggianese
    • 1
  • Mariaconsiglia Calabrese
    • 2
    • 3
  • Vincenzo De Maio
    • 4
  • Giuseppe De Pietro
    • 1
  • Armando Faggiano
    • 4
  • Luigi Gallo
    • 1
  • Giovanna Sannino
    • 1
  • Carmine Vecchione
    • 2
    • 5
  1. 1.Institute for High Performance Computing and Networking, National Research Council of Italy (ICAR-CNR)NaplesItaly
  2. 2.Department of Medicine and SurgeryUniversity of SalernoBaronissiItaly
  3. 3.S Giovanni di Dio e Ruggi d’Aragona HospitalSalernoItaly
  4. 4.Computer Science DepartmentUniversity of SalernoFiscianoItaly
  5. 5.I.R.C.C.S. Neurological Mediterranean Institute NEUROMEDPozzilliItaly

Personalised recommendations