Advertisement

Discovering Social Networks Instantly: Moving Process Mining Computations to the Database and Data Entry Time

  • Alifah Syamsiyah
  • Boudewijn F. van Dongen
  • Wil M. P. van der Aalst
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 287)

Abstract

Process mining aims to turn event data into insights and actions in order to improve processes. To improve process performance it is crucial to get insights into the way people work and collaborate. In this paper, we focus on discovering social networks from event data. To be able to deal with large data sets or with an environment which requires repetitive discoveries during the analysis, and still provide results instantly, we use an approach where most of the computation is moved to the database and things are precomputed at data entry time. Differently from traditional process mining where event data is stored in file-based system, we store event data in relational databases. Moreover, the database also has a role as an engine to compute the intermediate structure of social network during insertion data. By moving computation both in location (to database) and time (to recording time), the discovery of social networks in a process context becomes truly scalable. The approach has been implemented using the open source process mining toolkit ProM. The experiments reported in this paper demonstrate scalability while providing results instantly.

Keywords

Social network Process mining Relational database Repetitive discovery 

References

  1. 1.
    Appice, A., Pietro, M., Greco, C., Malerba, D.: Discovering and tracking organizational structures in event logs. In: Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds.) NFMCP 2015. LNCS, vol. 9607, pp. 46–60. Springer, Cham (2016). doi: 10.1007/978-3-319-39315-5_4 Google Scholar
  2. 2.
    Butts, C.T.: Social network analysis: a methodological introduction. Asian J. Soc. Psychol. 11, 13 (2008)CrossRefGoogle Scholar
  3. 3.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R.: Ontologies and databases: the DL-lite approach. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web. Semantic Technologies for Information Systems. LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03754-2_7 CrossRefGoogle Scholar
  4. 4.
    Calvanese, D., Montali, M., Syamsiyah, A., Aalst, W.M.P.: Ontology-driven extraction of event logs from relational databases. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 140–153. Springer, Cham (2016). doi: 10.1007/978-3-319-42887-1_12 CrossRefGoogle Scholar
  5. 5.
    Ferreira, D.R., Alves, C.: Discovering user communities in large event logs. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 123–134. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28108-2_11 CrossRefGoogle Scholar
  6. 6.
    Furht, B.: Handbook of Social Network Technologies and Applications, 1st edn. Springer, New York (2010)CrossRefGoogle Scholar
  7. 7.
    Gansner, E.R.: Using Graphviz as a library (2014)Google Scholar
  8. 8.
    Günther, C.W.: XES standard definition (2014). http://www.xes-standard.org
  9. 9.
    Jalali, A.: Supporting social network analysis using chord diagram in process mining. In: Řepa, V., Bruckner, T. (eds.) BIR 2016. LNBIP, vol. 261, pp. 16–32. Springer, Cham (2016). doi: 10.1007/978-3-319-45321-7_2 CrossRefGoogle Scholar
  10. 10.
    Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: IMC 2007, pp. 29–42, New York, USA (2007)Google Scholar
  11. 11.
    Poggi, A., Lembo, D., Calvanese, D., Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-77688-8_5 CrossRefGoogle Scholar
  12. 12.
    Schönig, S., Rogge-Solti, A., Cabanillas, C., Jablonski, S., Mendling, J.: Efficient and customisable declarative process mining with SQL. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 290–305. Springer, Cham (2016). doi: 10.1007/978-3-319-39696-5_18 Google Scholar
  13. 13.
    Syamsiyah, A., van Dongen, B.F., van der Aalst, W.M.P.: DB-XES: enabling process mining in the large. In: SIMPDA 2016, pp. 63–77 (2016)Google Scholar
  14. 14.
    Tang, J., Sun, J., Wang, C., Yang, Z.: Social influence analysis in large-scale networks. In: KDD 2009, pp. 807–816, New York, USA (2009)Google Scholar
  15. 15.
    van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  16. 16.
    van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering social networks from event logs. CSCW 14(6), 549–593 (2005)Google Scholar
  17. 17.
    Aalst, W.M.P., Song, M.: Mining social networks: uncovering interaction patterns in business processes. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp. 244–260. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-25970-1_16 CrossRefGoogle Scholar
  18. 18.
    van Dongen, B.F., Shabani, S.: Relational XES: data management for process mining. In: CAiSE 2015, pp. 169–176 (2015)Google Scholar
  19. 19.
    van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: Online discovery of cooperative structures in business processes. In: Christophe, D., Hervé, P., Robert, M., Tharam, D., Eva, K., Declan, O., Agostino, A.C. (eds.) OTM 2016. LNCS, vol. 10033. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-48472-3_12 Google Scholar
  20. 20.
    Yu, L., Zheng, J., Shen, W.C., Wu, B., Wang, B., Qian, L., Zhang, B.R.: BC-PDM: data mining, social network analysis and text mining system based on cloud computing. In: KDD 2012, pp. 1496–1499. ACM (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alifah Syamsiyah
    • 1
  • Boudewijn F. van Dongen
    • 1
  • Wil M. P. van der Aalst
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenNetherlands

Personalised recommendations