Advertisement

A Three-Dimensional Digital Watermarking Technique Based on Integral Image Cryptosystem and Discrete Fresnel Diffraction

  • Yiqun Liu
  • Jianqi Zhang
  • Zhen Zhang
  • Haining Luo
  • Xiaorui Wang
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 6)

Abstract

This paper presents a three-dimensional (3D) digital watermarking technique based on integral image cryptosystem and discrete Fresnel diffraction (DFD). 3D digital watermarking is generated by computational integral imaging. The 3D digital watermarking is encrypted and embedded by integral imaging cryptosystem that is designed with DFD transform algorithm. Finally, the extracted 3D digital watermarking is decrypted and displayed by integral imaging cryptosystem. The feasibility and effectiveness of the proposed scheme is demonstrated by numerical simulation experiment. The majority of system will improve the security and robustness of 3D digital watermarking. The proposed method can provide a new, real-time, and effective strategy in the security data management of cloud computing and big data.

Keywords

3D digital watermarking Integral imaging cryptosystem DFD Optical image 

References

  1. 1.
    Markman, A., Carnicer, A., Javidi, B.: Security authentication with a three-dimensional optical phase code using random forest classifier. J. Opt. Soc. Am. A 6, 1160–1165 (2016)CrossRefGoogle Scholar
  2. 2.
    Javidi, B., et al.: Roadmap on optical security. J. Opt. 8, 1–39 (2016)Google Scholar
  3. 3.
    Pereira, R., Pereira, E.G.: Future internet: trends and challenges. Int. J. Space-Based Situated Comput. (IJSSC) 3, 159–167 (2015)CrossRefGoogle Scholar
  4. 4.
    Bessis, N., Asimakopoulou, E., Xhafa, F.: A next generation emerging technologies roadmap for enabling collective computational intelligence in disaster management. Int. J. Space-Based Situated Comput. 1, 76–85 (2011)CrossRefGoogle Scholar
  5. 5.
    Refregier, P., Javidi, B.: Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 7, 3 (1995)Google Scholar
  6. 6.
    Peng, X., Zhang, P.: Security of virtual-optics-based cryptosystem. Optik Int. J. Light Electron Opt. 11, 525–531 (2006)CrossRefGoogle Scholar
  7. 7.
    Peng, X., et al.: Three-dimensional vision with dual acousto-optic deflection encoding. Opt. Lett. 15, 1965–1967 (2005)CrossRefGoogle Scholar
  8. 8.
    Lippmann, G.: Épreuves réversibles donnant la sensation du relief. J. Phys. Théor. Appl. 1, 821–825 (1908)CrossRefGoogle Scholar
  9. 9.
    Yontem, A.O., Onural, L.: Integral imaging using phase-only LCoS spatial light modulators as Fresnel lenslet arrays. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 11, 2359–2375 (2011)CrossRefGoogle Scholar
  10. 10.
    Xiao, X., et al.: Advances in three-dimensional integral imaging: sensing, display, and applications. Appl. Opt. 4, 546–560 (2013)CrossRefGoogle Scholar
  11. 11.
    Markman, A., Wang, J., Javidi, B.: Three-dimensional integral imaging displays using a quick-response encoded elementa. Optica 5, 332–335 (2014)CrossRefGoogle Scholar
  12. 12.
    Li, X.W., Cho, S.J., Kim, S.T.: Combined use BP neural network and computational integral imaging reconstruction for optical multiple-image security. Opt. Commun. 1, 147–158 (2014)CrossRefGoogle Scholar
  13. 13.
    Liu, Y., et al.: An improved security 3D watermarking method using computational integral imaging cryptosystem. Int. J. Technol. Hum. Interact. 2, 1–21 (2016)CrossRefGoogle Scholar
  14. 14.
    Hwang, D.-C., Shin, D.-H., Kim, E.-S.: A novel three-dimensional digital watermarking scheme basing on integral imaging. Opt. Commun. 1, 40–49 (2007)CrossRefGoogle Scholar
  15. 15.
    Muniraj, I., Kim, B., Lee, B.-G.: Encryption and volumetric 3D object reconstruction using multispectral computational integral imaging. Appl. Opt. 27, 25–32 (2014)CrossRefGoogle Scholar
  16. 16.
    Lin, J., Nishino, H.: A construction-from-parts-type 3D modeller for digital fabrication. Int. J. Space-Based Situated Comput. 4, 230–241 (2015)CrossRefGoogle Scholar
  17. 17.
    Akase, R., Okada, Y.: WebGL-based 3D furniture layout system using interactive evolutionary computation and its user evaluations. Int. J. Space-Based Situated Comput. 3, 143–164 (2014)CrossRefGoogle Scholar
  18. 18.
    Sun, N., et al.: A correction algorithm for stereo matching with general digital cameras and web cameras. Int. J. Space-Based Situated Comput. 3, 169–184 (2013)CrossRefGoogle Scholar
  19. 19.
    Liu, Y., Wang, X., Zhang, J., Zhang, M., Luo, P., Wang, X.A.: An improved security 3D watermarking method using computational integral imaging cryptosystem. Int. J. Technol. Hum. Interact. (IJTHI) 2, 1–12 (2016)CrossRefGoogle Scholar
  20. 20.
    Steinbauer, M., Anderst-Kotsis, G.: DynamoGraph: extending the Pregel paradigm for large-scale temporal graph processing. Int. J. Grid Comput. 2, 141–151 (2016)CrossRefGoogle Scholar
  21. 21.
    Kohana, M., Okamoto, S.: Access control for a confirming attendance system. Int. J. Space-Based Situated Comput. 2, 121–128 (2016)CrossRefGoogle Scholar
  22. 22.
    Pereira, R., Pereira, E.G.: Future internet: trends and challenges. Int. J. Space-Based Situated Comput. 3, 159–167 (2015)CrossRefGoogle Scholar
  23. 23.
    Mokadem, R., Hameurlain, A.: Data replication strategies with performance objective in data grid systems: a survey. Int. J. Grid Comput. 1, 30–46 (2015)CrossRefGoogle Scholar
  24. 24.
    Chasaki, D., Mansour, C.: Security challenges in the internet of things. Int. J. Space-Based Situated Comput. 3, 141–149 (2015)CrossRefGoogle Scholar
  25. 25.
    Bashar, A.: Graphical modelling approach for monitoring and management of telecommunication networks. Int. J. Space-Based Situated Comput. 2, 65–75 (2015)CrossRefGoogle Scholar
  26. 26.
    Thabet, M., Boufaida, M., Kordon, F.: An approach for developing an interoperability mechanism between cloud providers. Int. J. Space-Based Situated Comput. 2, 88–99 (2014)CrossRefGoogle Scholar
  27. 27.
    Nishimura, M., Nishino, H., Kagawa, T.: A digital contents management system using a real booklet interface with augmented reality. Int. J. Space-Based Situated Comput. 3, 194–202 (2014)CrossRefGoogle Scholar
  28. 28.
    Moore, P., et al.: Detection of the onset of agitation in patients with dementia: real-time monitoring and the application of big-data solutions. Int. J. Space-Based Situated Comput. (IJSSC) 3, 136–154 (2013)CrossRefGoogle Scholar
  29. 29.
    Akase, R., Okada, Y.: WebGL-based 3D furniture layout system using interactive evolutionary computation and its user evaluations. Int. J. Space-Based Situated Comput. (IJSSC) 4(3–4), 143–164 (2014)CrossRefGoogle Scholar
  30. 30.
    Balusamy, B., Krishna, P.V.: Collective advancements on access control scheme for multi-authority cloud storage system. Int. J. Grid Util. Comput. Spec. Issue Intell. Grid Cloud Comput. 6(3–4), 133–142 (2015)Google Scholar
  31. 31.
    Alamareen, A., Al-Jarrah, O., Aljarrah, I.A.: Image mosaicing using binary edge detection algorithm in a cloud-computing environment. Int. J. Inf. Technol. Web Eng. (IJITWE) 3, 1–14 (2016)CrossRefGoogle Scholar
  32. 32.
    Honarvar, A.R., Sami, A.: Extracting usage patterns from power usage data of homes’ appliances in smart home using big data platform. Int. J. Inf. Technol. Web Eng. (IJITWE) 2, 39–50 (2016)CrossRefGoogle Scholar
  33. 33.
    Wang, Y., et al.: Degradation and encryption for outsourced PNG images in cloud storage. Int. J. Grid Util. Comput. 1, 22–28 (2016)CrossRefGoogle Scholar
  34. 34.
    Voelz, D.: Computational Fourier Optics a MATLAB Tutorial, pp. 63–168. SPIE Press, Bellingham (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Yiqun Liu
    • 1
    • 2
  • Jianqi Zhang
    • 1
  • Zhen Zhang
    • 2
  • Haining Luo
    • 2
  • Xiaorui Wang
    • 1
  1. 1.School of Physics and Optoelectronic EngineeringXidian UniversityXi’anChina
  2. 2.Key Laboratory of CAPF for Cryptology and Information Security, Department of Electronic Technology EngineeringUniversity of Chinese Armed Police ForceXi’anChina

Personalised recommendations