Using Atlas Prior with Graph Cut Methods for Right Ventricle Segmentation from Cardiac MRI

  • Shusil DangiEmail author
  • Cristian A. Linte
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10263)


Right ventricle segmentation helps quantify many functional parameters of the heart and construct anatomical models for intervention planning. Here we propose a fast and accurate graph cut segmentation algorithm to extract the right ventricle from cine cardiac MRI sequences. A shape prior obtained by propagating the right ventricle label from an average atlas via affine registration is incorporated into the graph energy. The optimal segmentation obtained from the graph cut is iteratively refined to produce the final right ventricle blood pool segmentation. We evaluate our segmentation results against gold-standard expert manual segmentation of 16 cine MRI datasets available through the MICCAI 2012 Cardiac MR Right Ventricle Segmentation Challenge. Our method achieved an average Dice Index 0.83, a Jaccard Index 0.75, Mean absolute distance of 5.50 mm, and a Hausdorff distance of 10.00 mm.


Right Ventricular Right Ventricular Volume Cine Magnetic Resonance Image Ground Truth Segmentation Magnetic Resonance Image Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Petitjean, C., Zuluaga, M.A., Bai, W., Dacher, J.N., Grosgeorge, D., Caudron, J., Ruan, S., Ayed, I.B., Cardoso, M.J., Chen, H.C., Jimenez-Carretero, D., Ledesma-Carbayo, M.J., Davatzikos, C., Doshi, J., Erus, G., Maier, O.M., Nambakhsh, C.M., Ou, Y., Ourselin, S., Peng, C.W., Peters, N.S., Peters, T.M., Rajchl, M., Rueckert, D., Santos, A., Shi, W., Wang, C.W., Wang, H., Yuan, J.: Right ventricle segmentation from cardiac MRI: a collation study. Med. Image Anal. 19(1), 187–202 (2015)CrossRefGoogle Scholar
  2. 2.
    Caudron, J., Fares, J., Lefebvre, V., Vivier, P.H., Petitjean, C., Dacher, J.N.: Cardiac MRI assessment of right ventricular function in acquired heart disease: factors of variability. Acad. Radiol. 19(8), 991–1002 (2012)CrossRefGoogle Scholar
  3. 3.
    Maier, O.M.O., Jiménez, D., Santos, A., Ledesma-Carbayo, M.J.: Segmentation of RV in 4d cardiac MR volumes using region-merging graph cuts. In: 2012 Computing in Cardiology, pp. 697–700 (2012)Google Scholar
  4. 4.
    Wang, C.W., Peng, C.W., Chen, H.C.: A simple and fully automatic right ventricle segmentation method for 4-dimensional cardiac MR images. In: Workshop in Medical Image Computing and Computer Assisted Intervention, pp. 1–8 (2012)Google Scholar
  5. 5.
    Grosgeorge, D., Petitjean, C., Caudron, J., Fares, J., Dacher, J.N.: Automatic cardiac ventricle segmentation in MR images: a validation study. Int. J. Comput. Assist. Radiol. Surg. 6(5), 573–581 (2011)CrossRefGoogle Scholar
  6. 6.
    Grosgeorge, D., Petitjean, C., Dacher, J.N., Ruan, S.: Graph cut segmentation with a statistical shape model in cardiac MRI. Comput. Vis. Image Underst. 117(9), 1027–1035 (2013)CrossRefGoogle Scholar
  7. 7.
    Abi-Nahed, J., Jolly, M.-P., Yang, G.-Z.: Robust active shape models: a robust, generic and simple automatic segmentation tool. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 1–8. Springer, Heidelberg (2006). doi: 10.1007/11866763_1 CrossRefGoogle Scholar
  8. 8.
    ElBaz, M.S., Fahmy, A.S.: Active shape model with inter-profile modeling paradigm for cardiac right ventricle segmentation. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 691–698. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33415-3_85 CrossRefGoogle Scholar
  9. 9.
    Bai, W., Shi, W., Wang, H., Peters, N.S., Rueckert, D.: Multiatlas based segmentation with local label fusion for right ventricle MR images. Image 6, 9 (2012)Google Scholar
  10. 10.
    Ou, Y., Doshi, J., Erus, G., Davatzikos, C.: Multi-atlas segmentation of the cardiac MR right ventricle. In: Proceedings of 3D Cardiovascular Imaging: A MICCAI Segmentation Challenge (2012)Google Scholar
  11. 11.
    Zuluaga, M., Cardoso, M., Ourselin, S.: Automatic right ventricle segmentation using multi-label fusion in cardiac MRI. In: Medical Image Computing and Computer-Assisted Intervention, Workshop on RV Segmentation Challenge in Cardiac MRI (2012)Google Scholar
  12. 12.
    Peters, J., Ecabert, O., Meyer, C., Schramm, H., Kneser, R., Groth, A., Weese, J.: Automatic whole heart segmentation in static magnetic resonance image volumes. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4792, pp. 402–410. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75759-7_49 CrossRefGoogle Scholar
  13. 13.
    Zuluaga, M.A., Cardoso, M.J., Modat, M., Ourselin, S.: Multi-atlas propagation whole heart segmentation from MRI and CTA using a local normalised correlation coefficient criterion. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 174–181. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38899-6_21 CrossRefGoogle Scholar
  14. 14.
    Bai, W., Shi, W., O’Regan, D.P., Tong, T., Wang, H., Jamil-Copley, S., Peters, N.S., Rueckert, D.: A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: Application to cardiac MR images. IEEE Trans. Med. Imaging 32(7), 1302–1315 (2013)CrossRefGoogle Scholar
  15. 15.
    Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)CrossRefGoogle Scholar
  16. 16.
    Freedman, D., Zhang, T.: Interactive graph cut based segmentation with shape priors. In: Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005 I, pp. 755–762 (2005)Google Scholar
  17. 17.
    Mahapatra, D.: Cardiac image segmentation from cine cardiac MRI using graph cuts and shape priors. J. Digit. Imaging 26(4), 721–730 (2013)CrossRefGoogle Scholar
  18. 18.
    Ben-Zikri, Y.K., Linte, C.A.: A robust automated left ventricle region of interest localization technique using a cardiac cine MRI atlas. In: Proceedings of the SPIE Medical Imaging 2016: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 9786 (2016). 9786-27-12Google Scholar
  19. 19.
    Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)CrossRefGoogle Scholar
  21. 21.
    Gudbjartsson, H., Patz, S.: The rician distribution of noisy MRI data. Magn. Resonance Med. 34(6), 910–914 (1995)CrossRefGoogle Scholar
  22. 22.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans PAMI 23, 1222–39 (2001)CrossRefGoogle Scholar
  23. 23.
    Dangi, S., Cahill, N., Linte, C.A.: Integrating atlas and graph cut methods for left ventricle segmentation from cardiac cine MRI. In: Mansi, T., McLeod, K., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2016. LNCS, vol. 10124, pp. 76–86. Springer, Cham (2017). doi: 10.1007/978-3-319-52718-5_9 CrossRefGoogle Scholar
  24. 24.
    Dangi, S., Ben-Zikri, Y.K., Lamash, Y., Schwarz, K.Q., Linte, C.A.: Automatic LV feature detection and blood-pool tracking from multi-plane TEE time series. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds.) FIMH 2015. LNCS, vol. 9126, pp. 29–39. Springer, Cham (2015). doi: 10.1007/978-3-319-20309-6_4 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Chester F. Carlson Center for Imaging ScienceRochesterUSA
  2. 2.Biomedical EngineeringRochester Institute of TechnologyRochesterUSA

Personalised recommendations