Advertisement

Smoothed Particle Hydrodynamics for Electrophysiological Modeling: An Alternative to Finite Element Methods

  • Èric Lluch
  • Rubén Doste
  • Sophie Giffard-Roisin
  • Alexandre This
  • Maxime Sermesant
  • Oscar Camara
  • Mathieu De Craene
  • Hernán G. Morales
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10263)

Abstract

Finite element methods (FEM) are generally used in cardiac 3D-electromechanical modeling. For FEM modeling, a step of a suitable mesh construction is required, which is non-trivial and time-consuming for complex geometries. A meshless method is proposed to avoid meshing. The smoothed particle hydrodynamics (SPH) method was used to solve an electrophysiological model on a left ventricle extracted from medical imaging straightforwardly, without any need of a complex mesh. The proposed method was compared against FEM in the same left-ventricular model. Both FEM and SPH methods provide similar solutions of the models in terms of depolarization times. Main differences were up to 10.9% at the apex. Finally, a pathological application of SPH is shown on the same ventricular geometry with an added scar on the heart wall.

Keywords

SPH Meshless FEM Cardiac electrophysiology 

Notes

Acknowledgements

The work is supported by the European Union Horizon 2020 research and innovation programme under grant agreement No 642676 (CardioFunXion). The authors would like to thank the organizers of this project: Bart Bijnens and Mathieu De Craene. Finally, the authors would also like to thank David-Soto Iglesias for all the help provided with the conformal mapping of the endocardium.

References

  1. 1.
    Cabrera Lozoya, R.: Radiofrequency ablation planning for cardiac arrhythmia treatment using modeling and machine learning approaches. Theses, Université Nice Sophia Antipolis, September 2015Google Scholar
  2. 2.
    Campos, J.O., Oliveira, R.S., dos Santos, R.W., Rocha, B.M.: Lattice Boltzmann method for parallel simulations of cardiac electrophysiology using GPUs. J. Comput. Appl. Math. 295, 70–82 (2016). VIII Pan-American Workshop in Applied and Computational MathematicsMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chabiniok, R., Wang, V.Y., et al.: Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface Focus 6(2), 20150083 (2016)CrossRefGoogle Scholar
  4. 4.
    Chen, J.K., Beraun, J.E., Carney, T.C.: A corrective smoothed particle method for boundary value problems in heat conduction. Int. J. Numer. Method Eng. 46(2), 231–252 (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Chinchapatnam, P., Rhode, K., Ginks, M., Nair, P., Razavi, R., Arridge, S., Sermesant, M.: Voxel based adaptive meshless method for cardiac electrophysiology simulation. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 182–190. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01932-6_20 CrossRefGoogle Scholar
  6. 6.
    Marchesseau, S., Delingette, H., et al.: Fast parameter calibration of a cardiac electromechanical model from medical images based on the unscented transform. Biomech. Model. Mechanobiol. 12(4), 815–831 (2013)CrossRefGoogle Scholar
  7. 7.
    Mitchell, C.C., Schaeffer, D.G.: A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65(5), 767–793 (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68(8), 1703 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Nishiura, D., Furuichi, M., Sakaguchi, H.: Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing. Comput. Phys. Commun. 194, 18–32 (2013)CrossRefGoogle Scholar
  10. 10.
    Smith, N., de Vecchi, A., et al.: euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. Interface Focus 1(3), 349–364 (2011)CrossRefGoogle Scholar
  11. 11.
    Soto-Iglesias, D., Butakoff, C., et al.: Integration of electro-anatomical and imaging data of the left ventricle: an evaluation framework. Med. Image Anal. 32, 131–144 (2016)CrossRefGoogle Scholar
  12. 12.
    Streeter, D.D., Spotnitz, H.M., et al.: Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24(3), 339–347 (1969)CrossRefGoogle Scholar
  13. 13.
    Talbot, H., Marchesseau, S., et al.: Towards an interactive electromechanical model of the heart. Interface Focus 3(2) 2013Google Scholar
  14. 14.
    Yipintsoi, T., Scanlon, P.D., et al.: Density and water content of dog ventricular myocardium. Proc. Soc. Exp. Biol. Med. 141(3), 1032–1035 (1972)CrossRefGoogle Scholar
  15. 15.
    Zhang, H., Wang, L., Hunter, P.J., Pengcheng, S.: Meshfree framework for image-derived modelling. In: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1449–1452. IEEE, May 2008Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Èric Lluch
    • 1
    • 2
  • Rubén Doste
    • 1
  • Sophie Giffard-Roisin
    • 3
  • Alexandre This
    • 2
    • 4
  • Maxime Sermesant
    • 3
  • Oscar Camara
    • 1
  • Mathieu De Craene
    • 2
  • Hernán G. Morales
    • 2
  1. 1.PhySense, ETICUniversitat Pompeu FabraBarcelonaCatalonia
  2. 2.Medisys, Philips ResearchParisFrance
  3. 3.Université Côte d’Azur, InriaNiceFrance
  4. 4.InriaParisFrance

Personalised recommendations