Advertisement

Statistical Atlases for Electroanatomical Mapping of Cardiac Arrhythmias

  • Mihaela ConstantinescuEmail author
  • Su-Lin Lee
  • Sabine Ernst
  • Guang-Zhong Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10263)

Abstract

Electroanatomical mapping is a mandatory time-consuming planning step in cardiac catheter ablation. In practice, interventional cardiologists target specific endocardial areas for mapping based on personal experience, general electrophysiology principles, and preoperative anatomical scans. Effective fusion of all available information towards a useful mapping strategy has not been standardised and achieving the optimal map within time and space constraints is challenging. In this paper, a novel framework for computing optimal endocardial mapping locations in patients with congenital heart disease (CHD) is proposed. The method is based on a statistical electroanatomical model (SEAM) which is instantiated from preoperative anatomy in order to achieve an initial prediction of the electrical map. Simultaneously, the anatomical areas with the highest frequency of mapping among the similar cases in the dataset are detected and a classifier is trained to filter these points based on the electroanatomical data. The framework was tested in an iterative process of adding mapping points to the SEAM and computing the instantiation error, with retrospective clinical data of 66 CHD cases available.

Keywords

Congenital Heart Disease Right Ventricle Mapping Point Right Atrium Electroanatomical Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Andreopoulos, A., Tsotsos, J.K.: Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med. Image Anal. 12(3), 335–357 (2008)CrossRefGoogle Scholar
  2. 2.
    Cignoni, P., Corsini, M., Ranzuglia, G.: Meshlab: an open-source 3D mesh processing system. In: ERCIM News, pp. 45–46Google Scholar
  3. 3.
    Constantinescu, M.A., Lee, S.L., Navkar, N.V., Yu, W., Al-Rawas, S., Abinahed, J., Zheng, G., Keegan, J., Al-Ansari, A., Jomaah, N., Landreau, P., Yang, G.Z.: Constrained statistical modelling of knee flexion from multi-pose magnetic resonance imaging. IEEE Trans. Med. Imaging 35(7), 1686–1695 (2016)CrossRefGoogle Scholar
  4. 4.
    Roy, K., Gomez-Pulido, F., Ernst, S.: Remote magnetic navigation for catheter ablation in patients with congenital heart disease: a review. J. Cardiovasc. Electrophysiol. 27(Suppl 1), S45–S56 (2016)CrossRefGoogle Scholar
  5. 5.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  6. 6.
    El Yaman, M.M., Asirvatham, S.J., Kapa, S., Barrett, R.A., Packer, D.L., Porter, C.B.: Methods to access the surgically excluded cavotricuspid isthmus for complete ablation of typical atrial flutter in patients with congenital heart defects. Heart Rhythm 6(7), 949–956 (2009)CrossRefGoogle Scholar
  7. 7.
    Krueger, M.W., Seemann, G., Rhode, K., Keller, D.U., Schilling, C., Arujuna, A., Gill, J., O’Neill, M.D., Razavi, R., Doessel, O.: Personalization of atrial anatomy and electrophysiology as a basis for clinical modeling of radio-frequency ablation of atrial fibrillation. IEEE Trans. Med. Imaging 32(1), 73–84 (2013)CrossRefGoogle Scholar
  8. 8.
    Mansi, T., Voigt, I., Leonardi, B., Pennec, X., Durrleman, S., Sermesant, M., Delingette, H., Taylor, A.M., Boudjemline, Y., Pongiglione, G., Ayache, N.: A statistical model for quantification and prediction of cardiac remodelling: application to tetralogy of fallot. IEEE Trans. Med. Imaging 30(9), 1605–1616 (2011)CrossRefGoogle Scholar
  9. 9.
    Perperidis, D., Mohiaddin, R., Rueckert, D.: Construction of a 4D statistical atlas of the cardiac anatomy and its use in classification. Med. Image Comput. Comput. Assist. Interv. 8(Pt 2), 402–410 (2005)Google Scholar
  10. 10.
    Prakosa, A., Sermesant, M., Allain, P., Villain, N., Rinaldi, C.A., Rhode, K., Razavi, R., Delingette, H., Ayache, N.: Cardiac electrophysiological activation pattern estimation from images using a patient-specific database of synthetic image sequences. IEEE Trans. Biomed. Eng. 61(2), 235–245 (2014)CrossRefGoogle Scholar
  11. 11.
    Rasoulian, A., Rohling, R., Abolmaesumi, P.: Lumbar spine segmentation using a statistical multi-vertebrae anatomical shape+pose model. IEEE Trans. Med. Imaging 32(10), 1890–1900 (2013)CrossRefGoogle Scholar
  12. 12.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  13. 13.
    Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: RUSBoost: a hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 40(1), 185–197 (2010)CrossRefGoogle Scholar
  14. 14.
    Sermesant, M., Chabiniok, R., Chinchapatnam, P., Mansi, T., Billet, F., Moireau, P., Peyrat, J.M., Wong, K., Relan, J., Rhode, K., Ginks, M., Lambiase, P., Delingette, H., Sorine, M., Rinaldi, C.A., Chapelle, D., Razavi, R., Ayache, N.: Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation. Med. Image Anal. 16(1), 201–215 (2012)CrossRefGoogle Scholar
  15. 15.
    Wilms, M., Ehrhardt, J., Handels, H.: A 4D statistical shape model for automated segmentation of lungs with large tumors. Med. Image Comput. Comput. Assist. Interv. 15(Pt 2), 347–354 (2012)Google Scholar
  16. 16.
    Zettinig, O., Mansi, T., Georgescu, B., Kayvanpour, E., Sedaghat-Hamedani, F., Amr, A., Haas, J., Steen, H., Meder, B., Katus, H., Navab, N., Kamen, A., Comaniciu, D.: Fast data-driven calibration of a cardiac electrophysiology model from images and ECG. Med. Image Comput. Comput. Assist. Interv. 16(Pt 1), 1–8 (2013)Google Scholar
  17. 17.
    Zhang, H., Wahle, A., Johnson, R.K., Scholz, T.D., Sonka, M.: 4-D cardiac MR image analysis: left and right ventricular morphology and function. IEEE Trans. Med. Imaging 29(2), 350–364 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mihaela Constantinescu
    • 1
    Email author
  • Su-Lin Lee
    • 1
  • Sabine Ernst
    • 2
  • Guang-Zhong Yang
    • 1
  1. 1.The Hamlyn Centre for Robotic SurgeryImperial College LondonLondonUK
  2. 2.The Royal Brompton and Harefield HospitalLondonUK

Personalised recommendations