VT Scan: Towards an Efficient Pipeline from Computed Tomography Images to Ventricular Tachycardia Ablation

  • Nicolas CedilnikEmail author
  • Josselin Duchateau
  • Rémi Dubois
  • Pierre Jaïs
  • Hubert Cochet
  • Maxime Sermesant
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10263)


Non-invasive prediction of optimal targets for efficient radio-frequency ablation is a major challenge in the treatment of ventricular tachycardia. Most of the related modelling work relies on magnetic resonance imaging of the heart for patient-specific personalized electrophysiology simulations.

In this study, we used high-resolution computed tomography images to personalize an Eikonal model of cardiac electrophysiology in seven patients, addressed to us for catheter ablation in the context of post-infarction arrhythmia. We took advantage of the detailed geometry offered by such images, which are also more easily available in clinical practice, to estimate a conduction speed parameter based on myocardial wall thickness. We used this model to simulate a propagation directly on voxel data, in similar conditions to the ones invasively observed during the ablation procedure.

We then compared the results of our simulations to dense activation maps that recorded ventricular tachycardias during the procedures. We showed as a proof of concept that realistic re-entrant pathways responsible for ventricular tachycardia can be reproduced using our framework, directly from imaging data.


Electrophysiological modelling Heart imaging Ventricular tachycardia Catheter ablation 


  1. 1.
    Mozaffarian, D., Benjamin, E.J., Go, A.S., Arnett, D.K., Blaha, M.J., Cushman, M., Das, S.R., de Ferranti, S., Després, J.-P., Fullerton, H.J., et al.: Executive summary: heart disease and stroke statistics-2016 update: a report from the american heart association. Circulation 133(4), 447 (2016)CrossRefGoogle Scholar
  2. 2.
    Ghanbari, H., Baser, K., Yokokawa, M., Stevenson, W., Bella, P.D., Vergara, P., Deneke, T., Kuck, K.-H., Kottkamp, H., Fei, S., et al.: Noninducibility in postinfarction ventricular tachycardia as an end point for ventricular tachycardia ablation and its effects on outcomes. Circ. Arrhythmia Electrophysiol. 7(4), 677–683 (2014)CrossRefGoogle Scholar
  3. 3.
    Aliot, E.M., Stevenson, W.G., Almendral-Garrote, J.M., Bogun, F., Calkins, C.H., Delacretaz, E., Bella, P.D., Hindricks, G., Jaïs, P., Josephson, M.E., et al.: EHRA/HRS expert consensus on catheter ablation of ventricular arrhythmias. Europace 11(6), 771–817 (2009)CrossRefGoogle Scholar
  4. 4.
    Ashikaga, H., Arevalo, H., Vadakkumpadan, F., Blake, R.C., Bayer, J.D., Nazarian, S., Zviman, M.M., Tandri, H., Berger, R.D., Calkins, H., et al.: Feasibility of image-based simulation to estimate ablation target in human ventricular arrhythmia. Heart Rhythm 10(8), 1109–1116 (2013)CrossRefGoogle Scholar
  5. 5.
    Arevalo, H., Plank, G., Helm, P., Halperin, H., Trayanova, N.: Tachycardia in post-infarction hearts insights from 3D image-based ventricular models. PloS one 8(7) (2013). e68872Google Scholar
  6. 6.
    Cabrera-Lozoya, R., et al.: Confidence-based training for clinical data uncertainty in image-based prediction of cardiac ablation targets. In: Menze, B., et al. (eds.) MCV 2014. LNCS, vol. 8848, pp. 148–159. Springer, Cham (2014). doi: 10.1007/978-3-319-13972-2_14 Google Scholar
  7. 7.
    Chen, Z., Cabrera-Lozoya, R., Relan, J., Sohal, M., Shetty, A., Karim, R., Delingette, H., Gill, J., Rhode, K., Ayache, N., et al.: Biophysical modeling predicts ventricular tachycardia inducibility and circuit morphology: a combined clinical validation and computer modeling approach. J. Cardiovasc. Electrophysiol. 27(7), 851–860 (2016)CrossRefGoogle Scholar
  8. 8.
    Wang, L., Gharbia, O.A., Horáček, B.M., Sapp, J.L.: Noninvasive epicardial and endocardial electrocardiographic imaging of scar-related ventricular tachycardia. J. Electrocardiol. 49(6), 887–893 (2016)CrossRefGoogle Scholar
  9. 9.
    Komatsu, Y., Cochet, H., Jadidi, A., Sacher, F., Shah, A., Derval, N., Scherr, D., Pascale, P., Roten, L., Denis, A., et al.: Regional myocardial wall thinning at multi-detector computed tomography correlates to arrhythmogenic substrate in post-infarction ventricular tachycardia: assessment of structural and electrical substrate. Circ. Arrhythmia Electrophysiol. 6(2), 342–350 (2013)CrossRefGoogle Scholar
  10. 10.
    Yezzi, A.J., Prince, J.L.: An eulerian PDE approach for computing tissue thickness. IEEE Trans. Med. Imaging 22(10), 1332–1339 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nicolas Cedilnik
    • 1
    Email author
  • Josselin Duchateau
    • 2
  • Rémi Dubois
    • 2
  • Pierre Jaïs
    • 2
  • Hubert Cochet
    • 2
  • Maxime Sermesant
    • 1
  1. 1.Université Côte d’Azur, InriaSophia AntipolisFrance
  2. 2.Liryc InstituteBordeauxFrance

Personalised recommendations