Advertisement

Towards Cognition-Guided Patient-Specific FEM-Based Cardiac Surgery Simulation

  • Nicolai Schoch
  • Vincent Heuveline
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10263)

Abstract

Biomechanical surgery simulation can provide surgeons with useful ancillary information for intervention planning, diagnosis and therapy. The simulation therefore most importantly needs to be patient-specific, surgical knowledge-based and comprehensive in terms of the underlying simulation model and the patient’s data. Moreover, the simulation setup and execution should be largely automated and integrated into the surgical treatment workflow. However, this still rarely holds and simulation-based surgery support is not yet commonly established in the clinic. In this work, we address this problem in the context of cardiac surgery, and present the setup and results of a prototypic cognition-guided, patient-specific FEM-based cardiac surgery simulation system. We have designed a semantic data infrastructure and implemented cognitive software components that autonomously interact with the medical data via a common ontology. Using this setup, we anable the creation of knowledge-based, patient-specific surgery simulation scenarios for mitral valve reconstruction surgery, that are executed by means of the FEM simulation software HiFlow3. The obtained simulation results are provided to the surgeon in order to support surgical decision making.

Keywords

Cognition-guidance Surgical information processing FEM surgery simulation Biomechanical modeling and simulation workflow Cardiac surgery Mitral valve reconstruction 

Notes

Acknowledgments

This work was carried out with the support of the German Research Foundation (DFG) in the framework of the Collaborative Research Center SFB/TRR 125 ‘Cognition-Guided Surgery’. We particularly thank our colleagues Sandy Engelhardt, Ivo Wolf (Institute of Informatics, University of Applied Science, Mannheim, Germany) and Raffaele de Simone (Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany) in the context of cardiac surgery and medical imaging, for the fruitful cooperation and for valuable explanations and discussions concerning our work. Also, we thank Patrick Philipp and York Sure-Vetter (Institute of Applied Informatics and Formal Description Methods (AIFB), Karlsruhe Institute of Technology, Karlsruhe, Germany) for the help and experience with respect to the cognitive semantic software and data infrastructure. We performed all simulations on the bwUniCluster, funded by the Ministry of Science, Research and the Arts Baden-Wuerttemberg and the Universities of the State of Baden-Wuerttemberg, Germany, within the framework program bwHPC.

References

  1. 1.
    Bathe, K.-J.: Finite Element Procedures. Prentice Hall, Englewood Cliffs (1996)zbMATHGoogle Scholar
  2. 2.
    Berners-Lee, T.: Linked Data. W3C. Design Issues, 27 July 2006Google Scholar
  3. 3.
    Biem, A., Butrico, M., Feblowitz, M., Klinger, T., Malitsky, Y., Ng, K., Perer, A., Reddy, C., Riabov, A., Samulowitz, H., Sow, D., Tesauro, G., Turaga, D.: Towards cognitive automation of data science. In: Proceedings of AAAI Conference on Artificial Intelligence 2015 (2015)Google Scholar
  4. 4.
    Carpentier, A.: Cardiac valve surgery the ‘French’ correction. J. Thorac. Cardiovasc. Surg. 86, 323–337 (1983)Google Scholar
  5. 5.
    Chandran, K., Kim, H.: Computational mitral valve evaluation and potential clinical applications. Ann. Biomed. Eng. 43(6), 1348–1362 (2014)CrossRefGoogle Scholar
  6. 6.
    Choi, A., Rim, Y., Mun, J.S., Kim, H.: A novel finite element-based patient-specific mitral valve repair: virtual ring annuloplasty. Biomed. Mater. Eng. 24(1), 341–347 (2014)Google Scholar
  7. 7.
    Engelhardt, S., Lichtenberg, N., Al-Maisary, S., Simone, R., Rauch, H., Roggenbach, J., Müller, S., Karck, M., Meinzer, H.-P., Wolf, I.: Towards automatic assessment of the mitral valve coaptation zone from 4D ultrasound. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds.) FIMH 2015. LNCS, vol. 9126, pp. 137–145. Springer, Cham (2015). doi: 10.1007/978-3-319-20309-6_16 CrossRefGoogle Scholar
  8. 8.
    Fedak, P.W.M., McCarthy, P.M., Bonow, R.O.: Evolving concepts and technologies in mitral valve repair. Circulation 117(7), 963–974 (2008)CrossRefGoogle Scholar
  9. 9.
    Fetzer, A., Metzger, J., Katic, D., Mrz, K., Wagner, M., Philipp, P., Engelhardt, S., Weller, T., Zelzer, S., Franz, A.M., Schoch, N., Heuveline, V., Maleshkova, M., Rettinger, A., Speidel, S., Wolf, I., Kenngott, H., Mehrabi, A., Mller, B., Maier-Hein, L., Meinzer, H.-P., Nolden, M.: Towards an open-source semantic data infrastructure for integrating clinical and scientific data in cognition-guided surgery. In: Proceedings of SPIE 9789 Medical Imaging 2016, vol. 9789, pp. 978900–978908 (2016)Google Scholar
  10. 10.
    Augustin, W., Baumann, M., Gengenbach, T., Hahn, T., Helfrich-Schkarbanenko, A., Heuveline, V., Ketelaer, E., Lukarski, D., Nestler, A., Ritterbusch, S., Ronnas, S., Schick, M., Schmidtobreick, M., Subramanian, C., Weiss, J.-P., Wilhelm, F., Wlotzka, M.: HiFlow3- a hardware-aware parallel finite element package. In: Brunst, H., Müller, M., Nagel, W., Resch, M. (eds.) Tools for High Performance Computing, pp. 139–151. Springer, Heidelberg (2012)Google Scholar
  11. 11.
    Mansi, T., Voigt, I., Georgescu, B., Zheng, X., Mengue, E.A., Hackl, M., Ionasec, R.I., Noack, T., Seeburger, J., Comaniciu, D.: An integrated framework for finite element modeling of mitral valve biomechanics from medical images. J. Med. Image. Anal. 16(7), 1330–1346 (2012)CrossRefGoogle Scholar
  12. 12.
    Morgan, A.E., Pantoja, J.L., Weinsaft, J., Grossi, E., Guccione, J.M., Ge, L., Ratcliffe, M.: Finite Element modeling of mitral valve repair. J. Biomech. Eng. 138(2), 021009 (2016)CrossRefGoogle Scholar
  13. 13.
    Philipp, P., Maleshkova, M., Katic, D., Weber, C., Goetz, M., Rettinger, A., Speidel, S., Kaempgen, B., Nolden, M., Wekerle, A.-L., Dillmann, R., Kenngott, H., Mueller, B., Studer, R.: Toward cognitive pipelines of medical assistance algorithms. Int. J. CARS 11(9), 1743–1753 (2015)CrossRefGoogle Scholar
  14. 14.
    Prot, V., Skallerud, B.: Nonlinear solid finite element analysis of mitral valves with heterogeneous leaflet layers. J. Comput. Mech. 43, 353–368 (2009)CrossRefzbMATHGoogle Scholar
  15. 15.
    Prot, V., Skallerud, B., Sommer, G., Holzapfel, G.A.: On modelling and analysis of healthy and pathological human mitral valves: two case studies. J. Mech. Behav. Biomed. Mater. 3, 167–177 (2010)CrossRefGoogle Scholar
  16. 16.
    Schoch, N., Engelhardt, S., De Simone, R., Wolf, I., Heuveline, V.: High performance computing for cognition-guided cardiac surgery: soft tissue simulation for mitral valve reconstruction in knowledge-based surgery assistance. In: Proceedings of High Performance Scientific Computing (HPSC) (2015, in press)Google Scholar
  17. 17.
    Schoch, N., Engelhardt, S., Zimmermann, N., Speidel, S., de Simone, R., Wolf, I., Heuveline, V.: Integration of a biomechanical simulation for mitral valve reconstruction into a knowledge-based surgery assistance system. In: Proceedings of SPIE 9415 Medical Imaging 2015, vol. 9415, pp. 941502–941502-7 (2015)Google Scholar
  18. 18.
    Schoch, N., Kissler, F., Stoll, M., Engelhardt, S., de Simone, R., Wolf, I., Bendl, R., Heuveline, V.: Comprehensive patient-specific information preprocessing for cardiac surgery simulations. Int. J. CARS 11(6), 1051–1059 (2016). (Special Issue IPCAI)CrossRefGoogle Scholar
  19. 19.
    Schoch, N., Philipp, P., Weller, T., Engelhardt, S., Volovyk, M., Fetzer, A., Nolden, M., de Simone, R., Wolf, I., Maleshkova, M., Rettinger, A., Studer, R., Heuveline, V.: Cognitive tools pipeline for assistance of mitral valve surgery. In: Proceedings of SPIE 9786 Medical Imaging 2016, 9786: 978603–978603-8 (2016)Google Scholar
  20. 20.
    Schoch, N., Speidel, S., Sure-Vetter, Y., Heuveline, V.: Towards semantic simulation for patient-specific surgery assistance. In: Online-Proceedings of Surgical Data Science 2016 (2016)Google Scholar
  21. 21.
    Suwelack, S., Stoll, M., Schalck, S., Schoch, N., Dillmann, R., Berndl, R., Heuveline, V., Speidel, S.: The medical simulation markup language - simplifying the biomechanical modeling workflow. J. Stud. Health. Techn. Inf. 196, 394–400 (2014)Google Scholar
  22. 22.
    Votta, E., Le, T.B., Stevanella, M., Fusini, L., Caiani, E.G., Redaelli, A., Sotiropoulos, F.: Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J. Biomech. 46, 217–228 (2013)CrossRefGoogle Scholar
  23. 23.
    Zhang, F., Kanik, J., Mansi, T., Voigt, I., Sharma, P., Ionasec, R.I., Subrahmanyan, L., Lin, B.A., Sugeng, L., Yuh, D., Comaniciu, D., Duncan, J.: Towards patient-specific modeling of mitral valve repair: 3D transesophageal echocardiography-derived parameter estimation. J. Med. Image Anal. 35, 599–609 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Engineering Mathematics and Computing Lab (EMCL)Heidelberg UniversityHeidelbergGermany

Personalised recommendations