Advertisement

Three-Dimensional Quantification of Myocardial Collagen Morphology from Confocal Images

  • Abdallah I. HasaballaEmail author
  • Gregory B. Sands
  • Alexander J. Wilson
  • Alistair A. Young
  • Vicky Y. Wang
  • Ian J. LeGrice
  • Martyn P. Nash
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10263)

Abstract

The mechanical properties of myocardial tissue are primarily determined by the organisation of the collagen network. Quantitative measurements of collagen morphology can help to understand the structure-function relationship in cardiac tissue. In this study, we segmented collagen from high-resolution three-dimensional (3D) images of the left ventricle (LV) mid-wall myocardium obtained using extended-volume confocal microscopy. 3D shape analysis was used to compute the morphological parameters elongation (e), flatness (f), and anisotropy (a). We applied this analysis to both control and hypertensive rat hearts and showed distinct differences between the control and remodelled hearts, particularly in collagen elongation. The predominant form of collagen in the control rat is elongated with a value of e = 0.846 ± 0.041, whereas in the hypertensive rat collagen, is arranged mostly in a sheet-like form with e = 0.301 ± 0.023. Such quantitative information can be used to develop microstructural models of the myocardium that link the observed changes in cardiac microstructure to changes in mechanical function during the progression of heart diseases, which will help to elucidate the underlying pathological mechanisms.

Keywords

Collagen morphology Seeded region-growing algorithm Shape analysis Moments of inertia Confocal imaging 

References

  1. 1.
    Weber, K.T., Sun, Y., Tyagi, S.C., Cleutjens, J.P.: Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. J. Mol. Cell. Cardiol. 26, 279–292 (1994)CrossRefGoogle Scholar
  2. 2.
    Berk, B.C., Fujiwara, K., Lehoux, S.: ECM remodeling in hypertensive heart disease. J. Clin. Invest. 117, 568–575 (2007)CrossRefGoogle Scholar
  3. 3.
    Omens, J.H., Miller, T.R., Covell, J.W.: Relationship between passive tissue strain and collagen uncoiling during healing of infarcted myocardium. Cardiovasc. Res. 33, 351–358 (1997)CrossRefGoogle Scholar
  4. 4.
    Kato, S., Spinale, F.G., Tanaka, R., Johnson, W., Cooper, G., Zile, M.R.: Inhibition of collagen cross-linking: effects on fibrillar collagen and ventricular diastolic function. Am. J. Physiol. Heart Circulatory Physiol. 269, H863–H868 (1995)Google Scholar
  5. 5.
    Brilla, C.G., Janicki, J., Weber, K.: Cardioreparative effects of lisinopril in rats with genetic hypertension and left ventricular hypertrophy. Circulation 83, 1771–1779 (1991)CrossRefGoogle Scholar
  6. 6.
    LeGrice, I.J., Pope, A.J., Sands, G.B., Whalley, G., Doughty, R.N., Smaill, B.H.: Progression of myocardial remodeling and mechanical dysfunction in the spontaneously hypertensive rat. Am. J. Physiol. Heart Circulatory Physiol. 303, H1353–H1365 (2012)CrossRefGoogle Scholar
  7. 7.
    Sands, G.B., Gerneke, D.A., Hooks, D.A., Green, C.R., Smaill, B.H., LeGrice, I.J.: Automated imaging of extended tissue volumes using confocal microscopy. Microsc. Res. Tech. 67, 227–239 (2005)CrossRefGoogle Scholar
  8. 8.
    Young, A., LeGrice, I., Young, M., Smaill, B.: Extended confocal microscopy of myocardial laminae and collagen network. J. Microsc. 192, 139–150 (1998)CrossRefGoogle Scholar
  9. 9.
    Weickert, J., Romeny, B.T.H., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7, 398–410 (1998)CrossRefGoogle Scholar
  10. 10.
    Kapur, J.N., Sahoo, P.K., Wong, A.K.: A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vision Graph. Image Process. 29, 273–285 (1985)CrossRefGoogle Scholar
  11. 11.
    Rangayyan, R.M.: Biomedical Image Analysis. CRC Press, Boca Raton (2004)CrossRefGoogle Scholar
  12. 12.
    Loncaric, S.: A survey of shape analysis techniques. Pattern Recogn. 31, 983–1001 (1998)CrossRefGoogle Scholar
  13. 13.
    Flusser, J., Zitova, B., Suk, T.: Moments and Moment Invariants in Pattern Recognition. Wiley, Hoboken (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    El Moumen, A., Kanit, T., Imad, A., El Minor, H.: Effect of reinforcement shape on physical properties and representative volume element of particles-reinforced composites: Statistical and numerical approaches. Mech. Mater. 83, 1–16 (2015)CrossRefGoogle Scholar
  15. 15.
    Pope, A.J., Sands, G.B., Smaill, B.H., LeGrice, I.J.: Three-dimensional transmural organization of perimysial collagen in the heart. Am. J. Physiol. Heart Circulatory Physiol. 295, H1243–H1252 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Abdallah I. Hasaballa
    • 1
    Email author
  • Gregory B. Sands
    • 1
    • 2
  • Alexander J. Wilson
    • 1
    • 2
  • Alistair A. Young
    • 1
    • 3
  • Vicky Y. Wang
    • 1
  • Ian J. LeGrice
    • 1
    • 2
  • Martyn P. Nash
    • 1
    • 4
  1. 1.Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
  2. 2.Department of PhysiologyUniversity of AucklandAucklandNew Zealand
  3. 3.Department of Anatomy with RadiologyUniversity of AucklandAucklandNew Zealand
  4. 4.Department of Engineering ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations