Advertisement

Chaotic Nature of Eye Movement Signal

  • Katarzyna Harezlak
  • Pawel Kasprowski
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 72)

Abstract

The eye movement analysis undertaken in many research is conducted to better understand the biology of the brain and oculomotor system functioning. The studies presented in this paper considered eye movement signal as an output of a nonlinear dynamic system and are concentrated on determining the chaotic behaviour existence. The system nature was examined during a fixation, one of key components of eye movement signal, taking its vertical velocity into account. The results were compared with those obtained in the case of the horizontal direction. This comparison showed that both variables provide the similar representation of the underlying dynamics. In both cases, the analysis revealed the chaotic nature of eye movement for the first 200 ms, just after a stimulus position change. Subsequently, the signal characteristic tended to be the convergent one, however, in some cases, depending on a part of the fixation duration the chaotic behaviour was still observable.

Keywords

Eye movement Fixation Nonlinear system analysis Chaotic behavior 

Notes

Acknowledgments

The research presented in this paper was partially supported by the Silesian University of Technology Rector’s Pro-Quality Grant 02/020/RGJ17/0103.

References

  1. 1.
    Abarbanel, H.D.I.: Analysis of observed chaotic data. Institute for Nonlinear Science. Springer, New York (1996)Google Scholar
  2. 2.
    Aguirre, L.A., Letellier, C.: Observability of multivariate differential embeddings. J. Phys. A: Math. Gen. 38(28), 6311 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Astefanoaei, C., Creanga, D., Pretegiani, E., Optican, L., Rufa, A.: Dynamical complexity analysis of saccadic eye movements in two different psychological conditions. Rom. Rep. Phys. 66(4), 1038–1055 (2014)Google Scholar
  4. 4.
    Darrien, J.H., Herd, K., Starling, L.J., Rosenberg, J.R., Morrison, J.D.: An analysis of the dependence of saccadic latency on target position and target characteristics in human subjects. BMC Neurosci. 2(1), 1–8 (2001)CrossRefGoogle Scholar
  5. 5.
    Fiedler, S., Glockner, A.: The dynamics of decision making in risky choice: an eye-tracking analysis. Front. Psychol. 3, 335 (2012)CrossRefGoogle Scholar
  6. 6.
    Foster, T.E., Ardoin, S.P., Binder, K.S.: Underlying changes in repeated reading: an eye movement study. Sch. Psychol. Rev. 42(2), 140 (2013)Google Scholar
  7. 7.
    Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    van Gog, T., Scheiter, K.: Eye tracking as a tool to study and enhance multimedia learning. Learn. Instr. 20(2), 95–99 (2010)CrossRefGoogle Scholar
  9. 9.
    Goldberg, J.H., Stimson, M.J., Lewenstein, M., Scott, N., Wichansky, A.M.: Eye tracking in web search tasks: design implications. In: Proceedings of the 2002 Symposium on Eye Tracking Research & Applications, ETRA 2002, pp. 51–58. ACM, New York (2002)Google Scholar
  10. 10.
    Harezlak, K.: Eye movement dynamics during imposed fixations. Inf. Sci. 384, 249–262 (2017)CrossRefGoogle Scholar
  11. 11.
    Harezlak, K., Kasprowski, P.: Evaluating quality of dispersion based fixation detection algorithm. In: Czachorski, T., Gelenbe, E., Lent, R. (eds.) Information Sciences and Systems 2014, pp. 97–104. Springer (2014)Google Scholar
  12. 12.
    Harezlak, K., Kasprowski, P., Stasch, M.: Towards accurate eye tracker calibration - methods and procedures. Procedia Comput. Sci. 35, 1073–1081 (2014)CrossRefGoogle Scholar
  13. 13.
    Harezlak, K., Rzeszutek, J., Kasprowski, P.: The eye tracking methods in user interfaces assessment. In: Intelligent Decision Technologies: Proceedings of the 7th KES International Conference on Intelligent Decision Technologies (KES-IDT 2015), pp. 325–335. Springer, Cham (2015)Google Scholar
  14. 14.
    Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., Van de Weijer, J.: Eye tracking: a comprehensive guide to methods and measures. OUP Oxford (2011)Google Scholar
  15. 15.
    Hyona, J., Lorch, R.F., Kaakinen, J.K.: Individual differences in reading to summarize expository text: evidence from eye fixation patterns. J. Educ. Psychol. 94(1), 44–55 (2002)CrossRefGoogle Scholar
  16. 16.
    Novo, J.: Ober Consulting (2015). http://www.ober-consulting.com/9/lang/1/
  17. 17.
    Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403–3411 (1992)CrossRefGoogle Scholar
  18. 18.
    Komogortsev, O., Gobert, D., Jayarathna, S., Koh, D.H., Gowda, S.: Standardization of automated analyses of oculomotor fixation and saccadic behaviors. IEEE Trans. Biomed. Eng. 57(11), 2635–2645 (2010)CrossRefGoogle Scholar
  19. 19.
    Liang, J.R., Moshel, S., Zivotofsky, A.Z., Caspi, A., Engbert, R., Kliegl, R., Shlomo, H.: Scaling of horizontal and vertical fixational eye movements. Phys. Rev. E 71(3), 031909 (2005)CrossRefGoogle Scholar
  20. 20.
    Martinez-Conde, S., Otero-Millan, J., Macknik, S.L.: The impact of microsaccades on vision: towards a unified theory of saccadic function. Nat. Rev. Neurosci. 14, 83–96 (2013)CrossRefGoogle Scholar
  21. 21.
    Martinez-Conde, S., Macknik, S.L., Hubel, D.H.: The role of fixational eye movements in visual perception. Nat. Neurosci. 5, 229–240 (2004)CrossRefGoogle Scholar
  22. 22.
    Otero-Millan, J., Troncoso, X.G., Macknik, S.L., Serrano-Pedraza, I., Martinez-Conde, S.: Saccades and microsaccades during visual fixation, exploration, and search: foundations for a common saccadic generator. J. Vis. 8(14), 21 (2008)CrossRefGoogle Scholar
  23. 23.
    Porterfield, W.: An essay concerning the motions of our eyes. Part I. Of their external motions. Edinb. Med. Essays Obs. 3, 160–263 (1737)Google Scholar
  24. 24.
    Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65(1–2), 117–134 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Salvucci, D.D., Goldberg, J.H.: Identifying fixations and saccades in eye-tracking protocols. In: Proceedings of the 2000 Symposium on Eye Tracking Research & Applications, ETRA 2000, pp. 71–78. ACM, New York (2000)Google Scholar
  26. 26.
    Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press, Oxford (2003)zbMATHGoogle Scholar
  27. 27.
    Takens, F.: Detecting strange attractors in turbulence. Lecture Notes in Mathematics, vol. 898, p. 366 (1981)Google Scholar
  28. 28.
    Vallières, B.R., Chamberland, C., Vachon, F., Tremblay, S.: Insights from eye movement into dynamic decision-making research and usability testing. In: International Conference on Human-Computer Interaction, pp. 169–174. Springer (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Silesian University of TechnologyGliwicePoland

Personalised recommendations