Advertisement

Introduction to Plant Stresses

  • Kareem A. Mosa
  • Ahmed Ismail
  • Mohamed Helmy
Chapter
Part of the SpringerBriefs in Systems Biology book series (BRIEFSBIOSYS)

Abstract

Plant stress is a state where the plant is growing in non-ideal growth conditions that increase the demands made upon it. The effects of stress can lead to deficiencies in growth, crop yields, permanent damage or death if the stress exceeds the plant tolerance limits. Plant stress factors are mainly categorized into two main groups; abiotic factors and biotic factors. The abiotic factors include the different environmental factors that affect plant growth (such as light, water, and temperature), while the biotic factors are the other organisms that share the environment and interact with the plants (such as pathogens and pests). Response to stress usually involves complex molecular mechanisms, including changes in gene expression and regulatory networks. In this chapter, we will provide a general overview of the different types of plant stresses, their effects and how plants respond these different types of stress.

Keywords

Plant stress Biotic stress Abiotic stress Stress factors Stress responses Stress effects Omics 

References

  1. Adamiec M, Drath M, Jackowski G (2008) Redox state of plastoquinone pool regulates expression of Arabidopsis thaliana genes in response to elevated irradiance. Acta Biochim Pol 55:161–173.PubMedGoogle Scholar
  2. Agrios G (2005) Plant Pathology, 5th edn. Elsevier, LondonGoogle Scholar
  3. Amtmann A, Bohnert HJ, Bressan RA (2005) Abiotic stress and plant genome evolution. Search for new models. Plant Physiol 138:127–130. doi:  10.1104/pp.105.059972 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arbona V, Argamasilla R, Gómez-Cadenas A (2010) Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress. J Plant Physiol 167:1342–1350. doi:  10.1016/j.jplph.2010.05.012 CrossRefPubMedGoogle Scholar
  5. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543. doi:  10.1093/jxb/ers100 CrossRefPubMedGoogle Scholar
  6. Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997) Signaling in plant-microbe interactions. Science 276:726–733.CrossRefPubMedGoogle Scholar
  7. Barta C, Kálai T, Hideg K, et al (2004) Differences in the ROS-generating efficacy of various ultraviolet wavelengths in detached spinach leaves. Funct Plant Biol 31:23. doi:  10.1071/FP03170 CrossRefGoogle Scholar
  8. Beerling D (2007) The Emerald Planet: How Plants Changed Earth’s History, 1st edn. Oxford University Press, OxfordGoogle Scholar
  9. Blokhina O, Virolainen E, Fagerstedt K V (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194. doi:  10.1093/aob/mcf118 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Boyer JS (1982) Plant productivity and environment. Science 218:443–448. doi:  10.1126/science.218.4571.443 CrossRefPubMedGoogle Scholar
  11. Bressan R, Bohnert H, Zhu J-K (2009) Abiotic stress tolerance: from gene discovery in model organisms to crop improvement. Mol Plant 2:1–2. doi:  10.1093/mp/ssn097 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bressan RA, Zhang C, Zhang H, et al (2001) Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiol 127:1354–1360.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Buchner O, Karadar M, Bauer I, Neuner G (2013) A novel system for in situ determination of heat tolerance of plants: first results on alpine dwarf shrubs. Plant Methods 9:7. doi:  10.1186/1746-4811-9-7 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bunce JA (2009) Use of the response of photosynthesis to oxygen to estimate mesophyll conductance to carbon dioxide in water-stressed soybean leaves. Plant Cell Environ 32:875–81. doi:  10.1111/j.1365-3040.2009.01966.x CrossRefPubMedGoogle Scholar
  15. Crawford RMM, Braendle R (1996) Oxygen deprivation stress in a changing environment. J Exp Bot 47:145–159. doi:  10.1093/jxb/47.2.145 CrossRefGoogle Scholar
  16. Denekamp M, Smeekens SC (2003) Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene. Plant Physiol 132:1415–1423.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250. doi:  10.1146/annurev.arplant.48.1.223 CrossRefPubMedGoogle Scholar
  18. Duque AS, de Almeida AM, da Silva AB, da Silva JM, et al (2013) Abiotic Stress—Plant Responses and Applications in Agriculture. doi: 10.5772/45842
  19. Fan X-D, Wang J-Q, Yang N, et al (2013) Gene expression profiling of soybean leaves and roots under salt, saline-alkali and drought stress by high-throughput Illumina sequencing. Gene 512:392–402. doi:  10.1016/j.gene.2012.09.100 CrossRefPubMedGoogle Scholar
  20. Farnese FS, Menezes-Silva PE, Gusman GS, Oliveira JA (2016) When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Front Plant Sci 7:471. doi:  10.3389/fpls.2016.00471 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523. doi:  10.1111/j.1469-8137.2006.01787.x CrossRefPubMedGoogle Scholar
  22. Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121. doi:  10.1146/annurev.pp.28.060177.000513 CrossRefGoogle Scholar
  23. Froud-Williams RJ (2003) Weed Competition. In: Naylor REL (ed) Weed Manag. Handb., 9th edn. Blackwell Science Ltd, Oxford, UK, pp 16–38Google Scholar
  24. Fukao T, Bailey-Serres J (2004) Plant responses to hypoxia—is survival a balancing act? Trends Plant Sci 9:449–456. doi:  10.1016/j.tplants.2004.07.005 CrossRefPubMedGoogle Scholar
  25. Gaspar T, Franck T, Bisbis B, et al (2002) Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul 37:263–285. doi:  10.1023/A:1020835304842 CrossRefGoogle Scholar
  26. Gould KS, McKelvie J, Markham KR (2002) Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ 25:1261–1269. doi:  10.1046/j.1365-3040.2002.00905.x CrossRefGoogle Scholar
  27. Harding SA, Guikema JA, Paulsen GM (1990) Photosynthetic decline from high temperature stress during maturation of wheat: I. Interaction with senescence processes. Plant Physiol 92:648–653. doi:  10.1104/pp.92.3.648 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hettenhausen C, Schuman MC, Wu J (2015) MAPK signaling: a key element in plant defense response to insects. Insect Sci 22:157–164. doi:  10.1111/1744-7917.12128 CrossRefPubMedGoogle Scholar
  29. Higley LG, Browde JA, Higley PM (1993) International Crop Science I. Int Crop Sci I. doi: 10.2135/1993.internationalcropscience.c120
  30. Inan G, Zhang Q, Li P, et al (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737. doi:  10.1104/pp.104.041723 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jackson MB, Colmer TD (2005) Response and adaptation by plants to flooding stress. Ann Bot 96:501–505. doi:  10.1093/aob/mci205 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jackson MB, Ishizawa K, Ito O (2008) Evolution and mechanisms of plant tolerance to flooding stress. Ann Bot 103:137–142. doi:  10.1093/aob/mcn242 CrossRefGoogle Scholar
  33. Kranner I, Minibayeva F V, Beckett RP, Seal CE (2010) What is stress? Concepts, definitions and applications in seed science. New Phytol 188:655–673. doi:  10.1111/j.1469-8137.2010.03461.x CrossRefPubMedGoogle Scholar
  34. Kruse J, Rennenberg H, Adams MA (2011) Steps towards a mechanistic understanding of respiratory temperature responses. New Phytol 189:659–677. doi:  10.1111/j.1469-8137.2010.03576.x CrossRefPubMedGoogle Scholar
  35. Lamdan NL, Attia Z, Moran N, Moshelion M (2012) The Arabidopsis-related halophyte Thellungiella halophila: boron tolerance via boron complexation with metabolites? Plant Cell Environ 35:735–746. doi:  10.1111/j.1365-3040.2011.02447.x CrossRefPubMedGoogle Scholar
  36. Larcher W (1987) Stress bei Pflanzen. Naturwissenschaften 74:158–167. doi:  10.1007/BF00372919 CrossRefGoogle Scholar
  37. Lehoczky E, Reisinger P (2003) Study on the weed-crop competition for nutrients in maize. Commun Agric Appl Biol Sci 68:373–380.PubMedGoogle Scholar
  38. Lichtenthaler HK (1996) Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol 148:4–14. doi:  10.1016/S0176-1617(96)80287-2 CrossRefGoogle Scholar
  39. Lichtenthaler HK (1998) The stress concept in plants: an introduction. Ann N Y Acad Sci 851:187–198. doi:  10.1111/j.1749-6632.1998.tb08993.x CrossRefPubMedGoogle Scholar
  40. Minina EA, Filonova LH, Daniel G, Bozhkov P V (2013) Detection and measurement of necrosis in plants. Methods Mol Biol 1004:229–248. doi:  10.1007/978-1-62703-383-1,1-17 CrossRefPubMedGoogle Scholar
  41. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:  10.1016/S1360-1385(02)02312-9 CrossRefPubMedGoogle Scholar
  42. Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043. doi:  10.1093/jxb/erj100 CrossRefPubMedGoogle Scholar
  43. Nah G, Pagliarulo CL, Mohr PG, et al (2009) Comparative sequence analysis of the SALT OVERLY SENSITIVE1 orthologous region in Thellungiella halophila and Arabidopsis thaliana. Genomics 94:196–203. doi:  10.1016/j.ygeno.2009.05.007 CrossRefPubMedGoogle Scholar
  44. Noctor G, Foyer CH (1998) ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279. doi:  10.1146/annurev.arplant.49.1.249 CrossRefPubMedGoogle Scholar
  45. Olien CR, Smith MN (1977) Ice adhesions in relation to freeze stress. Plant Physiol 60:499–503. doi:  10.1104/pp.60.4.499 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pahlich E (1993) Larcher’s definition of plant stress: a valuable principle for metabolic adaptability research. Rev Bras Fisiol Veg 5:200–216.Google Scholar
  47. Pearce RS (1999) Molecular analysis of acclimation to cold. Plant Growth Regul 29:47–76. doi:  10.1023/A:1006291330661 CrossRefGoogle Scholar
  48. Pei L, Wang J, Li K, et al (2012) Overexpression of Thellungiella halophila H+-pyrophosphatase gene improves low phosphate tolerance in maize. PLoS One 7:e43501. doi:  10.1371/journal.pone.0043501 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Peterson JD, Umayam LA, Dickinson T, et al (2001) The comprehensive microbial resource. Nucleic Acids Res 29:123–125.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Peterson RKD, Higley LG (2000) Biotic Stress and Yield Loss, 1st edn. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  51. Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202. doi:  10.1016/j.jplph.2004.01.013 CrossRefGoogle Scholar
  52. Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743. doi:  10.1074/jbc.M313350200 CrossRefPubMedGoogle Scholar
  53. Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709. doi:  10.1146/annurev.arplant.57.032905.105441 CrossRefPubMedGoogle Scholar
  54. Saruyama N, Sakakura Y, Asano T, et al (2013) Quantification of metabolic activity of cultured plant cells by vital staining with fluorescein diacetate. Anal Biochem 441:58–62. doi:  10.1016/j.ab.2013.06.005 CrossRefPubMedGoogle Scholar
  55. Sazzad K (2007) Exploring plant tolerance to biotic and abiotic stresses. Swedish University of Agricultural Sciences, UppsalaGoogle Scholar
  56. Shabala S, Wu H, Bose J (2015) Salt stress sensing and early signalling events in plant roots: current knowledge and hypothesis. Plant Sci 241:109–119. doi:  10.1016/j.plantsci.2015.10.003 CrossRefPubMedGoogle Scholar
  57. Shao H-B, Chu L-Y, Jaleel CA, et al (2009) Understanding water deficit stress-induced changes in the basic metabolism of higher plants—biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit Rev Biotechnol 29:131–151. doi:  10.1080/07388550902869792 CrossRefPubMedGoogle Scholar
  58. Shao H-B, Guo Q-J, Chu L-Y, et al (2007) Understanding molecular mechanism of higher plant plasticity under abiotic stress. Colloids Surf B Biointerfaces 54:37–45. doi:  10.1016/j.colsurfb.2006.07.002 CrossRefPubMedGoogle Scholar
  59. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223.CrossRefPubMedGoogle Scholar
  60. Singh R, Jwa N-S (2013) Understanding the responses of rice to environmental stress using proteomics. J Proteome Res 12:4652–4669. doi:  10.1021/pr400689j CrossRefPubMedGoogle Scholar
  61. Somersalo S, Krause GH (1989) Photoinhibition at chilling temperature: fluorescence characteristics of unhardened and cold-acclimated spinach leaves. Planta 177:409–416. doi:  10.1007/BF00403600 CrossRefPubMedGoogle Scholar
  62. Song Y, Gao J, Yang F, et al (2013) Molecular evolutionary analysis of the Alfin-like protein family in Arabidopsis lyrata, Arabidopsis thaliana, and Thellungiella halophila. PLoS One 8:e66838. doi:  10.1371/journal.pone.0066838 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Taiz L, Zeiger E (1991) Plant Physiology, 1st edn. Benjamin-Cummings Publishing Company Inc., San Francisco, CAGoogle Scholar
  64. Taji T, Seki M, Satou M, et al (2004) Comparative genomics in salt tolerance between Arabidopsis and aRabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709. doi:  10.1104/pp.104.039909 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tester M, Davenport R (2003) Na+ tolerance and Na+ Transport in higher plants. Ann Bot 91:503–527. doi:  10.1093/aob/mcg058 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–8. doi:  10.1104/pp.118.1.1 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Thomashow MF (1999) PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599. doi:  10.1146/annurev.arplant.50.1.571 CrossRefPubMedGoogle Scholar
  68. Urao T (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754. doi:  10.1105/tpc.11.9.1743 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Vartapetian BB, Andreeva IN, Generozova IP, et al (2003) Functional electron microscopy in studies of plant response and adaptation to anaerobic stress. Ann Bot 91:155–172. doi:  10.1093/aob/mcf244 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Verslues PE, Zhu J-K (2005) Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem Soc Trans 33:375–379. doi:  10.1042/BST0330375 CrossRefPubMedGoogle Scholar
  71. Vialaret J, Di Pietro M, Hem S, et al (2014) Phosphorylation dynamics of membrane proteins from Arabidopsis roots submitted to salt stress. Proteomics 14:1058–1070. doi:  10.1002/pmic.201300443 CrossRefPubMedGoogle Scholar
  72. Walling L (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216.PubMedGoogle Scholar
  73. Wang M, Wang Q, Zhang B (2013a) Evaluation and selection of reliable reference genes for gene expression under abiotic stress in cotton (Gossypium hirsutum L.). Gene 530:44–50. doi:  10.1016/j.gene.2013.07.084 CrossRefPubMedGoogle Scholar
  74. Wang W, Wu Y, Li Y, et al (2010) A large insert Thellungiella halophila BIBAC library for genomics and identification of stress tolerance genes. Plant Mol Biol 72:91–99. doi:  10.1007/s11103-009-9553-3 CrossRefPubMedGoogle Scholar
  75. Wang X, Chang L, Wang B, et al (2013b) Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance. Mol Cell Proteomics 12:2174–2195. doi:  10.1074/mcp.M112.022475 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Wardlaw IF (1972) Responses of plants to environmental stresses. J. Levitt. Academic Press, New York, 1972. xiv, 698 pp., illus. $32.50. Physiological Ecology. Science 177:786. doi: 10.1126/science.177.4051.786
  77. Zhu J-K (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4(5):401–406.CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Kareem A. Mosa
    • 1
    • 2
  • Ahmed Ismail
    • 2
  • Mohamed Helmy
    • 3
  1. 1.Department of Applied Biology, College of SciencesUniversity of SharjahSharjahUAE
  2. 2.Department of Biotechnology, Faculty of AgricultureAl-Azhar UniversityCairoEgypt
  3. 3.The Donnelly Centre for Cellular and Bimolecular ResearchUniversity of TorontoTorontoCanada

Personalised recommendations