Business Process Comparison: A Methodology and Case Study

  • Alifah SyamsiyahEmail author
  • Alfredo Bolt
  • Long Cheng
  • Bart F. A. Hompes
  • R. P. Jagadeesh Chandra Bose
  • Boudewijn F. van Dongen
  • Wil M. P. van der Aalst
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 288)


Business processes often exhibit a high degree of variability. Process variants may manifest due to the differences in the nature of clients, heterogeneity in the type of cases, etc. Through the use of process mining techniques, one can benefit from historical event data to extract non-trivial knowledge for improving business process performance. Although some research has been performed on supporting process comparison within the process mining context, applying process comparison in practice is far from trivial. Considering all comparable attributes, for example, leads to an exponential number of possible comparisons. In this paper we introduce a novel methodology for applying process comparison in practice. We successfully applied the methodology in a case study within Xerox Services, where a forms handling process was analyzed and actionable insights were obtained by comparing different process variants using event data.


Process comparison Process mining Business analytics 


  1. 1.
    Bolt, A., de Leoni, M., van der Aalst, W.M.P.: A visual approach to spot statistically-significant differences in event logs based on process metrics. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 151–166. Springer, Cham (2016). doi: 10.1007/978-3-319-39696-5_10 Google Scholar
  2. 2.
    Bozkaya, M., Gabriels, J., van der Werf, J.M.E.M.: Process diagnostics: a method based on process mining. In: Kusiak, A., Lee, S. (eds.) eKNOW 2009, pp. 22–27. IEEE Computer Society (2009)Google Scholar
  3. 3.
    Buijs, J.C.A.M.: Flexible evolutionary algorithms for mining structured process models. Ph.D. thesis, TU Eindhoven, p. 179 (2014)Google Scholar
  4. 4.
    Buijs, J.C.A.M., Reijers, H.A.: Comparing business process variants using models and event logs. In: Bider, I., Gaaloul, K., Krogstie, J., Nurcan, S., Proper, H.A., Schmidt, R., Soffer, P. (eds.) BPMDS/EMMSAD -2014. LNBIP, vol. 175, pp. 154–168. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-43745-2_11 Google Scholar
  5. 5.
    Cordes, C., Vogelgesang, T., Appelrath, H.-J.: A generic approach for calculating and visualizing differences between process models in multidimensional process mining. In: Fournier, F., Mendling, J. (eds.) BPM 2014. LNBIP, vol. 202, pp. 383–394. Springer, Cham (2015). doi: 10.1007/978-3-319-15895-2_32 Google Scholar
  6. 6.
    Hompes, B.F.A., Buijs, J.C.A.M., van der Aalst, W.M.P.: A generic framework for context-aware process performance analysis. In: Debruyne, C., et al. (eds.) On the Move to Meaningful Internet Systems. LNCS, vol. 10033, pp. 300–317. Springer International Publishing, Cham (2016)Google Scholar
  7. 7.
    Jans, M., Alles, M., Vasarhelyi, M.A.: Process mining of event logs in internal auditing: a case study. In: ISAIS (2012)Google Scholar
  8. 8.
    Jans, M.J., Alles, M., Vasarhelyi, M.A.: Process mining of event logs in auditing: opportunities and challenges (2010). SSRN 2488737Google Scholar
  9. 9.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014). doi: 10.1007/978-3-319-06257-0_6 CrossRefGoogle Scholar
  10. 10.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery with guarantees. In: BPMDS/EMMSAD, pp. 85–101 (2015)Google Scholar
  11. 11.
    Mans, R.S., Schonenberg, H., Song, M., van der Aalst, W.M.P., Bakker, P.J.M.: Application of process mining in healthcare - a case study in a Dutch hospital. In: BIOSTEC, pp. 425–438 (2008)Google Scholar
  12. 12.
    Paszkiewicz, Z.: Process mining techniques in conformance testing of inventory processes: an industrial application. In: Abramowicz, W. (ed.) BIS 2013. LNBIP, vol. 160, pp. 302–313. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41687-3_28 CrossRefGoogle Scholar
  13. 13.
    Puchovsky, M., Di Ciccio, C., Mendling, J.: A case study on the business benefits of automated process discovery. In: SIMPDA, pp. 35–49 (2016)Google Scholar
  14. 14.
    Rebuge, A., Ferreira, D.R.: Business process analysis in healthcare environments: a methodology based on process mining. Inf. Syst. 37(2), 99–116 (2012)CrossRefGoogle Scholar
  15. 15.
    Rozinat, A., de Jong, I.S.M., Günther, C.W., van der Aalst, W.M.P.: Process mining applied to the test process of wafer scanners in ASML. IEEE Trans. Syst. Man Cybern. Part C 39(4), 474–479 (2009)CrossRefGoogle Scholar
  16. 16.
    Song, M., Günther, C.W., Aalst, W.M.P.: Trace clustering in process mining. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp. 109–120. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00328-8_11 CrossRefGoogle Scholar
  17. 17.
    Suriadi, S., Wynn, M.T., Ouyang, C., Hofstede, A.H.M., Dijk, N.J.: Understanding process behaviours in a large insurance company in Australia: a case study. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 449–464. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38709-8_29 CrossRefGoogle Scholar
  18. 18.
    van Beest, N.R.T.P., Dumas, M., García-Bañuelos, L., La Rosa, M.: Log delta analysis: interpretable differencing of business process event logs. In: BPM, pp. 386–405 (2015)Google Scholar
  19. 19.
    van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  20. 20.
    van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE 16(9), 1128–1142 (2004)Google Scholar
  21. 21.
    van der Spoel, S., van Keulen, M., Amrit, C.: Process prediction in noisy data sets: a case study in a Dutch hospital. In: Cudre-Mauroux, P., Ceravolo, P., Gašević, D. (eds.) SIMPDA 2012. LNBIP, vol. 162, pp. 60–83. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40919-6_4 CrossRefGoogle Scholar
  22. 22.
    van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. Fundam. Inform. 94(3–4), 387–412 (2009)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM\(^2\): a process mining project methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 297–313. Springer, Cham (2015). doi: 10.1007/978-3-319-19069-3_19 CrossRefGoogle Scholar
  24. 24.
    Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-17722-4_5 CrossRefGoogle Scholar
  25. 25.
    Zhou, Z., Wang, Y., Li, L.: Process mining based modeling and analysis of workflows in clinical care - a case study in a Chicago outpatient clinic. In: ICNSC, pp. 590–595. IEEE (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alifah Syamsiyah
    • 1
    Email author
  • Alfredo Bolt
    • 1
  • Long Cheng
    • 1
  • Bart F. A. Hompes
    • 1
  • R. P. Jagadeesh Chandra Bose
    • 2
  • Boudewijn F. van Dongen
    • 1
  • Wil M. P. van der Aalst
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.XeroxBangaloreIndia

Personalised recommendations