Advertisement

k-maxitivity of Order-Preserving Homomorphisms of Lattices

  • Radko MesiarEmail author
  • Anna Kolesárová
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 581)

Abstract

The concept of k-maxitivity for order-preserving homomorphisms between bounded lattices is introduced and discussed. As particular cases, k-maxitive capacities and aggregation functions are studied and exemplified.

Notes

Acknowledgement

Both authors kindly acknowledge the support of the project of Science and Technology Assistance Agency under the contract No. APVV–14–0013. Moreover, the work of R. Mesiar on this paper was supported by the VEGA grant 1/0420/15.

References

  1. 1.
    Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  2. 2.
    Calvo, T., De Baets, B.: Aggregation operators defined by k-order additive/maxitive fuzzy measures. Int. J. Uncertain. Fuzzyness Knowl. Based Syst. 6, 533–550 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Calvo, T., Kolesárová, A., Komorníková, M., Mesiar, R.: Aggregation operators: properties, classes and construction methods. In: Calvo, T., Mayor, G., Mesiar, R. (eds.) Aggregation Operators. New Trends and Applications, pp. 3–107. Physica-Verlag, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Cao-Van, K., De Baets, B.: A decomposition of \(k\)-additive Choquet and \(k\)-maxitive Sugeno integrals. Int. J. Uncertain. Fuzzyness Knowl. Based Syst. 9, 127–144 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    De Cooman, G., Kerre, E.: Order norms on bounded partially ordered sets. J. Fuzzy Math. 2(2), 281–310 (1994)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)CrossRefzbMATHGoogle Scholar
  7. 7.
    Durante, F., Sempi, C.: Semicopulae. Kybernetika 41, 281–310 (2005)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  9. 9.
    Klement, E.P., Mesiar, R., Pap, E.: A universal integral as common frame for Choquet and Sugeno integral. IEEE Trans. Fuzzy Syst. 18, 178–187 (2010)CrossRefGoogle Scholar
  10. 10.
    Marichal, J.-L.: Aggregation operations for multicriteria decision aid. Ph.D. thesis. Institute of Mathematics University of Liege, Liege, Belgium (1998)Google Scholar
  11. 11.
    Mesiar, R.: \(k\)-order pan-additive discrete fuzzy measures. In: Proceedings of the 7th IFSA World Congress, pp. 488–490. Prague (1997)Google Scholar
  12. 12.
    Mesiar, R.: k-order additivity and maxitivity. Atti del Seminario Matematico e Fisico dell’Universita di Modena 23(51), 179–189 (2003)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Mesiar, R., Kolesárová, A.: \(k\)-maxitive aggregation functions. Fuzzy Sets Syst. (submitted)Google Scholar
  14. 14.
    Murillo, J., Guillaume, S., Bulacio, P.: k-maxitive fuzzy measures: a scalable approach to model interactions. Fuzzy Sets Syst. (submitted)Google Scholar
  15. 15.
    Shilkret, N.: Maxitive measure and integration. Indag. Math. 33, 109–116 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sugeno, M.: Theory of fuzzy integrals and its applications. Ph.D. thesis. Tokyo Institute of Technology (1974)Google Scholar
  17. 17.
    Wang, Z., Klir, G.J.: Generalized Measure Theory. Springer, New York (2008)zbMATHGoogle Scholar
  18. 18.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Descriptive Geometry, Faculty of Civil EngineeringSlovak University of TechnologyBratislavaSlovakia
  2. 2.Faculty of Chemical and Food Technology, Institute of Information Engineering, Automation and MathematicsSlovak University of TechnologyBratislavaSlovakia

Personalised recommendations