The Quantitative and Molecular Genetics of Individual Differences in Animal Personality

Chapter

Abstract

One of the main goals in current personality research is to identify genes behind the measured behavioral variations. This is important in order to study how, under the influence of the environment, gene expression changes are translated into the observed phenotypes. The advances, especially in genomic technologies, have made it possible to identify genetic loci behind these variations, also concerning non-model species. In this chapter, we will describe the role and relevance of quantitative and molecular genetic approaches in explaining the existence and maintenance of variation in animal personality. We here will provide (1) a timely review on the papers published on this topic, (2) an overview of the current situation and progress, and (3) a view on the likely new avenues the field will take.

Keywords

Personality Genetics Behavior QTL mapping Genome-wide association studies Pleiotropy Quantitative genetics Molecular genetics Polygenic trait 

References

  1. Adams, M. J., King, J. E., & Weiss, A. (2012). The majority of genetic variation in orangutan personality and subjective well-being is nonadditive. Behavior Genetics, 42, 675–686. doi: 10.1007/s10519-012-9537-y PubMedCrossRefGoogle Scholar
  2. Anholt, R. R., & Mackay, T. F. (2009). Principles of behavioral genetics. Amsterdam: Academic.Google Scholar
  3. Anholt, R. R., & Mackay, T. F. (2004). Quantitative genetic analyses of complex behaviors in Drosophila. Nature Reviews Genetics, 5, 838–849. doi: 10.1038/nrg1472 PubMedCrossRefGoogle Scholar
  4. Arnold, K. E., Ramsay, S. L., Donaldson, C., & Adam, A. (2007). Parental prey selection affects risk-taking behavior and spatial learning in avian offspring. Proceedings of the Royal Society B: Biological Sciences, 274, 2563–2569. doi: 10.1098/rspb.2007.0687 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Backström, N., Forstmeier, W., Schielzeth, H., Mellenius, H., Nam, K., Bolund, E., et al. (2010). The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Research, 20, 485–495. doi: 10.1101/gr.101410.109
  6. Bell, A. M., & Aubin-Horth, N. (2010). What can whole genome expression data tell us about the ecology and evolution of personality? Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 4001–4012. doi: 10.1098/rstb.2010.0185 CrossRefGoogle Scholar
  7. Bell, A. M., & Stamps, J. A. (2004). Development of behavioral differences between individuals and populations of sticklebacks, Gasterosteus aculeatus. Animal Behavior, 68, 1339–1348. doi: 10.1016/j.anbehav.2004.05.007 CrossRefGoogle Scholar
  8. Bell, A. M., & Dochtermann, N. A. (2015). Integrating molecular mechanisms into quantitative genetics to understand consistent individual differences in behavior. Current Opinion in Behavioral Sciences, 6, 111–114. doi: 10.1016/j.cobeha.2015.10.014 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bell, M. A., & Foster, S. A. (1994). The evolutionary biology of the threespine stickleback. Oxford: Oxford University Press.Google Scholar
  10. Belknap, J. K., Hitzemann, R., Crabbe, J. C., Phillips, T. J., Buck, K. J., & Williams, R. W. (2001). QTL analysis and genomewide mutagenesis in mice: Complementary genetic approaches to the dissection of complex traits. Behavior Genetics, 31, 5–15. doi: 10.1023/A:1010249607128 PubMedCrossRefGoogle Scholar
  11. Bendesky, A., & Bargmann, C. I. (2011). Genetic contributions to behavioral diversity at the gene–environment interface. Nature Reviews Genetics. doi: 10.1038/nrg3065 PubMedGoogle Scholar
  12. Bers, N. E., van Oers, K., Kerstens, H. H., Dibbits, B. W., Crooijmans, R. P., Visser, M. E., et al. (2010). Genome-wide SNP detection in the great tit Parus major using high throughput sequencing. Molecular Ecology, 19, 89–99. doi: 10.1111/j.1365-294x.2009.04486.x PubMedCrossRefGoogle Scholar
  13. Boake, C., Arnold, S., Breden, F., Meffert, L., Ritchie, M., Taylor, B., et al. (2002). Genetic tools for studying adaptation and the evolution of behavior. The American Naturalist, 160(S6), S143–S159. doi: 10.1086/342902 PubMedCrossRefGoogle Scholar
  14. Boehmler, W., Carr, T., Thisse, C., Thisse, B., Canfield, V. A., & Levenson, R. (2007). D4 Dopamine receptor genes of zebrafish and effects of the antipsychotic clozapine on larval swimming behavior. Genes, Brain and Behavior, 6, 155–166. doi: 10.1111/j.1601-183x.2006.00243.x CrossRefGoogle Scholar
  15. Brem, R. B., & Kruglyak, L. (2005). The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proceedings of the National Academy of Sciences, 102, 1572–1577. doi: 10.1073/pnas.0408709102 CrossRefGoogle Scholar
  16. Brommer, J. E., & Kluen, E. (2012). Exploring the genetics of nestling personality traits in a wild passerine bird: Testing the phenotypic gambit. Ecology and Evolution, 2, 3032–3044. doi: 10.1002/ece3.412 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brydges, N. M., Colegrave, N., Heathcote, R. J., & Braithwaite, V. A. (2008). Habitat stability and predation pressure affect temperament behaviors in populations of three-spined sticklebacks. Journal of Animal Ecology, 77, 229–235. doi: 10.1111/j.1365-2656.2007.01343.x PubMedCrossRefGoogle Scholar
  18. Bućan, M., & Abel, T. (2002). The Mouse: Genetics meets behavior. Nature Reviews Genetics, 3, 114–123. doi: 10.1038/nrg728 PubMedCrossRefGoogle Scholar
  19. Burtt, H. E., & Giltz, M. L. (1973). Personality as a variable in the behavior of birds. Journal of Science, 73, 65–82.Google Scholar
  20. Bush, W. S., Moore, J. H., Lewitter, F., & Kann, M. (2012). Chapter 11: Genome-Wide Association Studies. PLoS Computational Biology, 8(12), e1002822.Google Scholar
  21. Careau, V., Thomas, D., Pelletier, F., Turki, L., Landry, F., Garant, D., et al. (2011). Genetic correlation between resting metabolic rate and exploratory behavior in deer mice (Peromyscus maniculatus). Journal of Evolutionary Biology, 24, 2153–2163. doi: 10.1111/j.1420-9101.2011.02344.x PubMedCrossRefGoogle Scholar
  22. Carere, C., & Maestripieri, D. (2013). Animal personalities: Behavior, physiology, and evolution. Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  23. Caspi, A. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851–854. doi: 10.1126/science.1072290 PubMedCrossRefGoogle Scholar
  24. Christensen, K. A., Brunelli, J. P., Wheeler, P. A., & Thorgaard, G. H. (2014). Antipredator behavior QTL: Differences in rainbow trout clonal lines derived from wild and hatchery populations. Behavior Genetics, 44, 535–546. doi: 10.1007/s10519-014-9663-9 PubMedCrossRefGoogle Scholar
  25. Christiansen, S. B., & Forkman, B. (2007). Assessment of animal welfare in a veterinary context—a call for ethologists. Applied Animal Behavior Science, 106(4), 203–220. doi: 10.1016/j.applanim.2007.01.004 CrossRefGoogle Scholar
  26. Class, B., & Brommer, J. E. (2015). A strong genetic correlation underlying a behavioral syndrome disappears during development because of genotype–age interactions. Proceedings of the Royal Society B: Biological Sciences, 282, 20142777. doi: 10.1098/rspb.2014.2777 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Danchin, É., Charmantier, A., Champagne, F. A., Mesoudi, A., Pujol, B., & Blanchet, S. (2011). Beyond DNA: Integrating inclusive inheritance into an extended theory of evolution. Nature Reviews Genetics, 12, 475–486. doi: 10.1038/nrg3028 PubMedCrossRefGoogle Scholar
  28. Delvecchio, G., Bellani, M., Altamura, A. C., & Brambilla, P. (2016). The association between the serotonin and dopamine neurotransmitters and personality traits. Epidemiology and Psychiatric Sciences, 25, 109–112. doi: 10.1017/s2045796015001146 PubMedCrossRefGoogle Scholar
  29. Moor, D., Costa, P. T., Terracciano, A., Krueger, R. F., de Geus, E. J. C., Toshiko, T., et al. (2012). Meta-analysis of genome-wide association studies for personality. Molecular Psychiatry, 17, 337–349. doi: 10.1038/mp.2010.128 PubMedCrossRefGoogle Scholar
  30. Dingemanse, N. J., Plas, F. V., Wright, J., Reale, D., Schrama, M., Roff, D. A., et al. (2009). Individual experience and evolutionary history of predation affect expression of heritable variation in fish personality and morphology. Proceedings of the Royal Society B: Biological Sciences, 276, 1285–1293. doi: 10.1098/rspb.2008.1555 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dingemanse, N. J., & Wolf, M. (2013). Between-individual differences in behavioral plasticity within populations: Causes and consequences. Animal Behavior, 85, 1031–1039. doi: 10.1016/j.anbehav.2012.12.032 CrossRefGoogle Scholar
  32. Dingemanse, N. J., & Dochtermann, N. A. (2013). Quantifying individual variation in behavior: Mixed-effect modelling approaches. Journal of Animal Ecology, 82(1), 39–54. doi: 10.1111/1365-2656.12013 PubMedCrossRefGoogle Scholar
  33. Dochtermann, N. A., & Roff, D. A. (2010). Applying a quantitative genetics framework to behavioral syndrome research. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 4013–4020. doi: 10.1098/rstb.2010.0129 CrossRefGoogle Scholar
  34. Dochtermann, N. A., Schwab, T., & Sih, A. (2015). The contribution of additive genetic variation to personality variation: Heritability of personality. Proceedings of the Royal Society B: Biological Sciences, 282, 2014–2201. doi: 10.1098/rspb.2014.2201 Google Scholar
  35. Drent, P. J., van Oers, K., & Noordwijk, A. J. (2003). Realized heritability of personalities in the great tit (Parus major). Proceedings of the Royal Society B: Biological Sciences, 270, 45–51. doi: 10.1098/rspb.2002.2168 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Ducrest, A., Keller, L., & Roulin, A. (2008). Pleiotropy in the melanocortin system, coloration and behavioral syndromes. Trends in Ecology & Evolution, 23, 502–510. doi: 10.1016/j.tree.2008.06.001 CrossRefGoogle Scholar
  37. Eaves, L., & Verhulst, B. (2014). Problems and pit-falls in testing for G × E and epistasis in candidate gene studies of human behavior. Behavior Genetics, 44, 578–590. doi: 10.1007/s10519-014-9674-6 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Eley, T. C., & Plomin, R. (1997). Genetic analyses of emotionality. Current Opinion in Neurobiology, 7, 279–284. doi: 10.1016/s0959-4388(97)80017-7 PubMedCrossRefGoogle Scholar
  39. Erickson, D. L., Fenster, C. B., Stenoien, H. K., & Price, D. (2004). Quantitative trait locus analyses and the study of evolutionary process. Molecular Ecology, 13, 2505–2522. doi: 10.1111/j.1365-294x.2004.02254.x PubMedCrossRefGoogle Scholar
  40. Falconer, D., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). Harlow: Longman.Google Scholar
  41. Fidler, A. E., van Oers, K., Drent, P. J., Kuhn, S., Mueller, J. C., & Kempenaers, B. (2007). Drd4 gene polymorphisms are associated with personality variation in a passerine bird. Proceedings of the Royal Society B: Biological Sciences, 274(1619), 1685–1691. doi: 10.1098/rspb.2007.0337 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Filby, A. L., Paull, G. C., Hickmore, T. F., & Tyler, C. R. (2010). Unravelling the neurophysiological basis of aggression in a fish model. BMC Genomics, 11, 498. doi: 10.1186/1471-2164-11-498 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Fitzpatrick, M., Benshahar, Y., Smid, H., Vet, L., Robinson, G., & Sokolowski, M. (2005). Candidate genes for behavioral ecology. Trends in Ecology & Evolution, 20, 96–104. doi: 10.1016/j.tree.2004.11.017 CrossRefGoogle Scholar
  44. Flint, J., & Mackay, T. F. (2009). Genetic architecture of quantitative traits in mice, flies, and humans. Genome Research, 19, 723–733. doi: 10.1101/gr.086660.108 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Flint, J. (2003). Analysis of quantitative trait loci that influence animal behavior. Journal of Neurobiology, 54, 46–77. doi: 10.1002/neu.10161 PubMedCrossRefGoogle Scholar
  46. Flint, J., & Mott, R. (2001). Finding the molecular basis of quantitative traits: Successes and pitfalls. Nature Reviews Genetics, 2, 437–445. doi: 10.1038/35076585 PubMedCrossRefGoogle Scholar
  47. Frazzetto, G., Lorenzo, G. D., Carola, V., Proietti, L., Sokolowska, E., Siracusano, A., et al. (2007). Early trauma and increased risk for physical aggression during adulthood: The moderating role of MAOA genotype. PLoS ONE, 2, e486. doi: 10.1371/journal.pone.0000486 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gershenfeld, H. K., & Paul, S. M. (1997). Mapping quantitative trait loci for fear-like behaviors in mice. Genomics, 46, 1–8. doi: 10.1006/geno.1997.5002 PubMedCrossRefGoogle Scholar
  49. Gordon, J. A., & Hen, R. (2004). Genetic approaches to the study of anxiety. Annual Review of Neuroscience, 27, 193–222. doi: 10.1146/annurev.neuro.27.070203.144212 PubMedCrossRefGoogle Scholar
  50. Greenwood, A. K., Ardekani, R., Mccann, S. R., Dubin, M. E., Sullivan, A., Bensussen, S., et al. (2015). Genetic mapping of natural variation in schooling tendency in the threespine stickleback. Genes|Genomes|Genetics, 5, 761–769. doi: 10.1534/g3.114.016519 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Groothuis, T. G., & Trillmich, F. (2011). Unfolding personalities: The importance of studying ontogeny. Developmental Psychobiology, 53, 641–655. doi: 10.1002/dev.20574 PubMedCrossRefGoogle Scholar
  52. Guan, Y., & Stephens, M. (2011). Bayesian variable selection regression for genome-wide association studies and other large-scale problems. The Annals of Applied Statistics, 5, 1780–1815. doi: 10.1214/11-aoas455 CrossRefGoogle Scholar
  53. Gutierrez-Gil, B., Ball, N., Burton, D., Haskell, M., Williams, J. L., & Wiener, P. (2008). Identification of quantitative trait loci affecting cattle temperament. Journal of Heredity, 99, 629–638. doi: 10.1093/jhered/esn060 PubMedCrossRefGoogle Scholar
  54. Haskell, M. J., Simm, G., & Turner, S. P. (2014). Genetic selection for temperament traits in dairy and beef cattle. Frontiers in Genetics, 5, 368. doi: 10.3389/fgene.2014.00368 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Heils, A., Teufel, A., Petri, S., Seemann, M., Bengel, D., Balling, U., et al. (1995). Functional promoter and polyadenylation site mapping of the human serotonin (5-HT) transporter gene. Journal of Neural Transmission, 102, 247–254. doi: 10.1007/bf01281159 PubMedCrossRefGoogle Scholar
  56. Henderson, C. R. (1984). Applications of linear models in animal breeding. Guelph, ON: University of Guelph.Google Scholar
  57. Hovatta, I., & Barlow, C. (2008). Molecular genetics of anxiety in mice and men. Annals of Medicine, 40, 92–109. doi: 10.1080/07853890701747096 PubMedCrossRefGoogle Scholar
  58. Inoue-Murayama, M. (2009). Genetic polymorphism as a background of animal behavior. Animal Science Journal, 80, 113–120. doi: 10.1111/j.1740-0929.2008.00623.x PubMedCrossRefGoogle Scholar
  59. Ito, H., Nara, H., Inoue-Murayama, M., Shimada, M. K., Koshimura, A., Ueda, Y., et al. (2004). Allele frequency distribution of the canine dopamine receptor d4 gene exon iii and i in 23 breeds. Journal of Veterinary Medical Science, 66, 815–820. doi: 10.1292/jvms.66.815 PubMedCrossRefGoogle Scholar
  60. Johnsson, M., Williams, M. J., Jensen, P., & Wright, D. (2016). Genetical genomics of behavior: A novel chicken genomic model for anxiety behavior. Genetics, 202, 327–340. doi: 10.1534/genetics.115.179010 PubMedCrossRefGoogle Scholar
  61. Jordan, K. W., Carbone, M., Yamamoto, A., Morgan, T. J., & Mackay, T. F. (2007). Quantitative genomics of locomotor behavior in Drosophila melanogaster. Genome Biology, 8, R172. doi: 10.1186/gb-2007-8-8-r172 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kim-Cohen, J., Caspi, A., Taylor, A., Williams, B., Newcombe, R., Craig, I. W., et al. (2006). MAOA, maltreatment, and gene–environment interaction predicting children’s mental health: New evidence and a meta-analysis. Molecular Psychiatry, 11, 903–913. doi: 10.1038/sj.mp.4001851 PubMedCrossRefGoogle Scholar
  63. Koolhaas, J. M., De Boer, S. F., Buwalda, B., Van der Vegt, B. J., Carere, C., & Groothuis, A. G. G. (2001). How and why coping systems vary among individuals. In D. M. Broom (Ed.), Coping with challenge: Welfare in animals including humans (pp. 197–209). Dahlem: Dahlem University Press.Google Scholar
  64. Korsten, P., Mueller, J. C., Hermannstädter, C., Bouwman, K. M., Dingemanse, N. J., Drent, P. J., et al. (2010). Association between DRD4 gene polymorphism and personality variation in great tits: A test across four wild populations. Molecular Ecology, 19, 832–843. doi: 10.1111/j.1365-294x.2009.04518.x PubMedCrossRefGoogle Scholar
  65. Kotrschal, A., Lievens, E. J., Dahlbom, J., Bundsen, A., Semenova, S., Sundvik, M., et al. (2014). Artificial selection on relative brain size reveals a positive genetic correlation between brain size and proactive personality in the guppy. Evolution, 68, 1139–1149. doi: 10.1111/evo.12341 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kratochwil, C. F., & Meyer, A. (2014). Closing the genotype–phenotype gap: Emerging technologies for evolutionary genetics in ecological model vertebrate systems. BioEssays, 37, 213–226. doi: 10.1002/bies.201400142 PubMedCrossRefGoogle Scholar
  67. Krebs, J. R., & Davies, N. B. (1997). Behavioural ecology: An evolutionary approach. Wiley-Blackwell.Google Scholar
  68. Kruuk, L. E. (2004). Estimating genetic parameters in natural populations using the ‘animal model’. Philosophical Transactions of the Royal Society B: Biological Sciences, 359, 873–890. doi: 10.1098/rstb.2003.1437 CrossRefGoogle Scholar
  69. Kruuk, L. E., Slate, J., & Wilson, A. J. (2008). New answers for old questions: The evolutionary quantitative genetics of wild animal populations. Annual Review of Ecology Evolution and Systematics, 39, 525–548. doi: 10.1146/annurev.ecolsys.39.110707.173542 CrossRefGoogle Scholar
  70. Laine, V. N., Gossmann, T. I., Schachtschneider, K. M., Garroway, C. J., Madsen, O., Verhoeven, K. J., et al. (2016). Evolutionary signals of selection on cognition from the great tit genome and methylome. Nature Communications, 7, 10474. doi: 10.1038/ncomms10474 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Laine, V. N., Herczeg, G., Shikano, T., Vilkki, J., & Merilä, J. (2014). QTL analysis of behavior in nine-spined sticklebacks (Pungitius pungitius). Behavior Genetics, 44, 77–88. doi: 10.1007/s10519-013-9624-8
  72. Ledon-Rettig, C. C., Richards, C. L., & Martin, L. B. (2012). Epigenetics for behavioral ecologists. Behavioral Ecology, 24, 311–324. doi: 10.1093/beheco/ars145 CrossRefGoogle Scholar
  73. Lynch, M., & Walsh, B. (1998). Genetics and analysis of quantitative traits. Sunderland, MA: Sinauer.Google Scholar
  74. Lyons, L. A., Laughlin, T. F., Copeland, N. G., Jenkins, N. A., Womack, J. E., & O’brien, S. J. (1997). Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes. Nature Genetics, 15, 47–56. doi: 10.1038/ng0197-47 PubMedCrossRefGoogle Scholar
  75. Mackay, T. F., Stone, E. A., & Ayroles, J. F. (2009). The genetics of quantitative traits: Challenges and prospects. Nature Reviews Genetics, 10, 565–577. doi: 10.1038/nrg2612 PubMedCrossRefGoogle Scholar
  76. Mafli, A., Wakamatsu, K., & Roulin, A. (2011). Melanin-based coloration predicts aggressiveness and boldness in captive eastern Hermann’s tortoises. Animal Behavior, 81, 859–863. doi: 10.1016/j.anbehav.2011.01.025 CrossRefGoogle Scholar
  77. Meffert, L., Hicks, S., & Regan, J. (2002). Nonadditive genetic effects in animal behavior. The American Naturalist, 160(S6), S198–S213. doi: 10.1086/342896 PubMedCrossRefGoogle Scholar
  78. Moore, D. S. (2015). The developing genome: An introduction to behavioral epigenetics. Oxford: Oxford University Press.Google Scholar
  79. Mueller, J. C., Korsten, P., Hermannstaedter, C., Feulner, T., Dingemanse, N. J., Matthysen, E., et al. (2013). Haplotype structure, adaptive history and associations with exploratory behavior of the DRD4 gene region in four great tit (Parus major) populations. Molecular Ecology, 22, 2797–2809. doi: 10.1111/mec.12282 PubMedCrossRefGoogle Scholar
  80. Munafò, M. R., Freimer, N. B., Ng, W., Ophoff, R., Veijola, J., Miettunen, J., et al. (2009). 5-HTTLPR genotype and anxiety-related personality traits: A meta-analysis and new data. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 150B(2), 271–281. doi: 10.1002/ajmg.b.30808 PubMedCentralCrossRefGoogle Scholar
  81. Munafò, M. R., Yalcin, B., Willis-Owen, S. A., & Flint, J. (2008). Association of the Dopamine D4 receptor (DRD4) gene and approach-related personality traits: Meta-Analysis and new cata. Biological Psychiatry, 63, 197–206. doi: 10.1016/j.biopsych.2007.04.006 PubMedCrossRefGoogle Scholar
  82. Murphy, S. E., Norbury, R., Godlewska, B. R., Cowen, P. J., Mannie, Z. M., Harmer, C. J., et al. (2013). The effect of the serotonin transporter polymorphism (5-HTTLPR) on amygdala function: A meta-analysis. Molecular Psychiatry, 18, 512–520. doi: 10.1038/mp.2012.19 PubMedCrossRefGoogle Scholar
  83. Nelson, R. J., & Trainor, B. C. (2007). Neural mechanisms of aggression. Nature Reviews Neuroscience, 8, 536–546. doi: 10.1038/nrn2174 PubMedCrossRefGoogle Scholar
  84. van Oers, K., Drent, P. J., Jong, G. D., & Noordwijk, A. J. (2004). Additive and nonadditive genetic variation in avian personality traits. Heredity, 93, 496–503. doi: 10.1038/sj.hdy.6800530 PubMedCrossRefGoogle Scholar
  85. van Oers, K., & Mueller, J. C. (2010). Evolutionary genomics of animal personality. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3991–4000. doi: 10.1098/rstb.2010.0178 CrossRefGoogle Scholar
  86. van Oers, K., Santure, A. W., Cauwer, I. D., Bers, N. E., Crooijmans, R. P., Sheldon, B. C., et al. (2014). Replicated high-density genetic maps of two great tit populations reveal fine-scale genomic departures from sex-equal recombination rates. Heredity, 112(3), 307–316. doi: 10.1038/hdy.2013.107 PubMedCrossRefGoogle Scholar
  87. van Oers, K., Jong, G. D., Noordwijk, A. V. K., & Drent, P. (2005). Contribution of genetics to the study of animal personalities: A review of case studies. Behavior, 142, 1185–1206. doi: 10.1163/156853905774539364 CrossRefGoogle Scholar
  88. van Oers, K., & Sinn, D. L. (2013). Quantitative and molecular genetics of animal personality. In C. Carere & D. Maestripieri (Eds.), Animal personalities: Behavior, physiology, and evolution (pp. 148–200). Chicago: University of Chicago Press.CrossRefGoogle Scholar
  89. van Oers, K., & Sinn, D. L. (2011). Toward a basis for the phenotypic gambit: Advances in the evolutionary genetics of animal personality. In From genes to animal behavior primatology monographs (pp. 165–183). doi: 10.1007/978-4-431-53892-9_7
  90. Oortmerssen, G. A., & Bakker, T. C. (1981). Artificial selection for short and long attack latencies in wild Mus musculus domesticus. Behavior Genetics, 11, 115–126. doi: 10.1007/bf01065622 PubMedCrossRefGoogle Scholar
  91. Ozaki, N., Goldman, D., Kaye, W. H., Plotnicov, K., Greenberg, B. D., Lappalainen, J., et al. (2003). Serotonin transporter missense mutation associated with a complex neuropsychiatric phenotype. Molecular Psychiatry, 8, 933–936. doi: 10.1038/sj.mp.4001365 PubMedCrossRefGoogle Scholar
  92. Page, R. E., Rueppell, O., & Amdam, G. V. (2012). Genetics of reproduction and regulation of honeybee (Apis melliferal.) social behavior. Annual Review of Genetics, 46, 97–119. doi: 10.1146/annurev-genet-110711-155610 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Penke, L., Denissen, J. J., & Miller, G. F. (2007). The evolutionary genetics of personality. European Journal of Personality, 21, 549–587. doi: 10.1002/per.629 CrossRefGoogle Scholar
  94. Petelle, M. B., Martin, J. G., & Blumstein, D. T. (2015). Heritability and genetic correlations of personality traits in a wild population of yellow-bellied marmots (Marmota flaviventris). Journal of Evolutionary Biology, 28, 1840–1848. doi: 10.1111/jeb.12700 PubMedCrossRefGoogle Scholar
  95. Poissant, J., Réale, D., Martin, J., Festa-Bianchet, M., & Coltman, D. (2013). A quantitative trait locus analysis of personality in wild bighorn sheep. Ecology and Evolution, 3, 474–481. doi: 10.1002/ece3.468 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Ponsuksili, S., Zebunke, M., Murani, E., Trakooljul, N., Krieter, J., Puppe, B., et al. (2015). Integrated Genome-wide association and hypothalamus eQTL studies indicate a link between the circadian rhythm-related gene PER1 and coping behavior. Scientific Reports, 5, 16264. doi: 10.1038/srep16264 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Quinn, J. L., Patrick, S. C., Bouwhuis, S., Wilkin, T. A., & Sheldon, B. C. (2009). Heterogeneous selection on a heritable temperament trait in a variable environment. Journal of Animal Ecology, 78, 1203–1215. doi: 10.1111/j.1365-2656.2009.01585.x PubMedCrossRefGoogle Scholar
  98. Quinn, J., & Cresswell, W. (2005). Personality, anti-predation behavior and behavioral plasticity in the chaffinch Fringilla coelebs. Behavior, 142, 1377–1402. doi: 10.1163/156853905774539391 CrossRefGoogle Scholar
  99. Rasmuson, M. (2009). Old and new ideas about genes and behavior. Hereditas, 146, 198–203. doi: 10.1111/j.1601-5223.2009.02138.x PubMedCrossRefGoogle Scholar
  100. Ripke, S., O’Dushlaine, C., Chambert, K., Moran, J. L., Kahler, A. K., Akterin, S., et al. (2013). Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics, 45, 1150–1159. doi: 10.1038/ng.2742 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Risch, N. J. (2000). Searching for genetic determinants in the new millennium. Nature, 405, 847–856. doi: 10.1038/35015718 PubMedCrossRefGoogle Scholar
  102. Riyahi, S., Björklund, M., Mateos-Gonzalez, F., & Senar, J. C. (2017). Personality and urbanization: Behavioral traits and DRD4 SNP830 polymorphisms in great tits in Barcelona city. Journal of Ethology. doi: 10.1007/s10164-016-0496-2 Google Scholar
  103. Robinson, M. R., Santure, A. W., Decauwer, I., Sheldon, B. C., & Slate, J. (2013). Partitioning of genetic variation across the genome using multimarker methods in a wild bird population. Molecular Ecology, 22, 3963–3980. doi: 10.1111/mec.12375 PubMedCrossRefGoogle Scholar
  104. Rodenburg, T. B., Komen, H., Ellen, E. D., Uitdehaag, K. A., & Arendonk, J. A. (2008). Selection method and early-life history affect behavioral development, feather pecking and cannibalism in laying hens: A review. Applied Animal Behavior Science, 110, 217–228. doi: 10.1016/j.applanim.2007.09.009 CrossRefGoogle Scholar
  105. Roff, D. A. (1996). The evolution of genetic correlations: An analysis of patterns. Evolution, 50, 1392. doi: 10.2307/2410877 PubMedCrossRefGoogle Scholar
  106. Santure, A. W., Poissant, J., Cauwer, I. D., van Oers, K., Robinson, M. R., Quinn, J. L., et al. (2015). Replicated analysis of the genetic architecture of quantitative traits in two wild great tit populations. Molecular Ecology, 24, 6148–6162. doi: 10.1111/mec.13452 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Savitz, J. B., & Ramesar, R. S. (2004). Genetic variants implicated in personality: A review of the more promising candidates. American Journal of Medical Genetics, 131B(1), 20–32. doi: 10.1002/ajmg.b.20155 PubMedCrossRefGoogle Scholar
  108. Scott, A. L., Bortolato, M., Chen, K., & Shih, J. C. (2008). Novel monoamine oxidase A knock out mice with human-like spontaneous mutation. NeuroReport, 19, 739–743. doi: 10.1097/wnr.0b013e3282fd6e88 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Shih, J., & Thompson, R. (1999). Monoamine oxidase in neuropsychiatry and behavior. The American Journal of Human Genetics, 65, 593–598. doi: 10.1086/302562 PubMedCrossRefGoogle Scholar
  110. Shikano, T., Ramadevi, J., Shimada, Y., & Merilä, J. (2010). Utility of sequenced genomes for microsatellite marker development in non-model organisms: A case study of functionally important genes in nine-spined sticklebacks (Pungitius pungitius). BMC Genomics, 11, 334. doi: 10.1186/1471-2164-11-334 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Shimada, M. K., Inoue-Murayama, M., Ueda, Y., Maejima, M., Murayama, Y., Takenaka, O., et al. (2004). Polymorphism in the second intron of dopamine receptor D4 gene in humans and apes. Biochemical and Biophysical Research Communications, 316, 1186–1190. doi: 10.1016/j.bbrc.2004.03.006 PubMedCrossRefGoogle Scholar
  112. Sih, A., Bell, A., & Johnson, J. (2004). Behavioral syndromes: An ecological and evolutionary overview. Trends in Ecology & Evolution, 19, 372–378. doi: 10.1016/j.tree.2004.04.009 CrossRefGoogle Scholar
  113. Singh, P., Schimenti, J. C., & Bolcun-Filas, E. (2015). A mouse geneticist’s practical guide to CRISPR applications. Genetics, 199(1), 1–15. doi: 10.1534/genetics.114.169771 PubMedCrossRefGoogle Scholar
  114. Slate, J. (2013). From beavis to beak color: A simulation study to examine how much QTL mapping can reveal about the genetic architecture of quantitative traits. Evolution. doi: 10.1111/evo.12060 Google Scholar
  115. Slate, J. (2005). INVITED REVIEW: Quantitative trait locus mapping in natural populations—progress, caveats and future directions. Molecular Ecology, 14, 363–379. doi: 10.1111/j.1365-294x.2004.02378.x PubMedCrossRefGoogle Scholar
  116. Sokolowski, M. B. (2001). Drosophila: Genetics meets behavior. Nature Reviews Genetics, 2, 879–890. doi: 10.1038/35098592 PubMedCrossRefGoogle Scholar
  117. Stearns, F. W. (2010). One hundred years of pleiotropy: A retrospective. Genetics, 186, 767–773. doi: 10.1534/genetics.110.122549 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Stirling, D. G., Réale, D., & Roff, D. A. (2002). Selection, structure and the heritability of behavior. Journal of Evolutionary Biology, 15, 277–289. doi: 10.1046/j.1420-9101.2002.00389.x CrossRefGoogle Scholar
  119. Swiech, L., Heidenreich, M., Banerjee, A., Habib, N., Li, Y., Trombetta, J., et al. (2014). In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nature Biotechnology, 33, 102–106. doi: 10.1038/nbt.3055 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Taylor, R. W., Boon, A. K., Dantzer, B., Réale, D., Humphries, M. M., Boutin, S., et al. (2012). Low heritabilities, but genetic and maternal correlations between red squirrel behaviors. Journal of Evolutionary Biology, 25, 614–624. doi: 10.1111/j.1420-9101.2012.02456.x PubMedCrossRefGoogle Scholar
  121. Terracciano, A., Sanna, S., Uda, M., Deiana, B., Usala, G., Busonero, F., et al. (2008). Genome-wide association scan for five major dimensions of personality. Molecular Psychiatry, 15, 647–656. doi: 10.1038/mp.2008.113 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Tonteri, A., Vasemägi, A., Lumme, J., & Primmer, C. R. (2010). Beyond MHC: Signals of elevated selection pressure on Atlantic salmon (Salmo salar) immune-relevant loci. Molecular Ecology, 19, 1273–1282. doi: 10.1111/j.1365-294x.2010.04573.x PubMedCrossRefGoogle Scholar
  123. Trut, L. N., Iliushina, I. Z., Prasolova, L. A., & Kim, A. A. (1997). The hooded allele and selection of wild Norway rats Rattus norvegicus for behavior. Genetika, 33, 1156–1161. [Translation in English available in: Russian Journal of Genetics, 1997. 33, 983–989].Google Scholar
  124. Trut, L. (1999). Early canid domestication: The farm-fox experiment. American Scientist, 87, 160. doi: 10.1511/1999.20.813 CrossRefGoogle Scholar
  125. Verhulst, E. C., Mateman, A. C., Zwier, M. V., Caro, S. P., Verhoeven, K. J., & van Oers, K. (2016). Evidence from pyrosequencing indicates that natural variation in animal personality is associated with DRD4 DNA methylation. Molecular Ecology, 25, 1801–1811. doi: 10.1111/mec.13519 PubMedCrossRefGoogle Scholar
  126. Visser, M. E., Caro, S. P., van Oers, K., Schaper, S. V., & Helm, B. (2010). Phenology, seasonal timing and circannual rhythms: Towards a unified framework. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 3113–3127. doi: 10.1098/rstb.2010.0111 CrossRefGoogle Scholar
  127. Vitaterna, M. H., Pinto, L. H., & Takahashi, J. S. (2006). Large-scale mutagenesis and phenotypic screens for the nervous system and behavior in mice. Trends in Neurosciences, 29, 233–240. doi: 10.1016/j.tins.2006.02.006 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Weeland, J., Overbeek, G., Castro, B. O., & Matthys, W. (2015). Underlying mechanisms of gene–environment interactions in externalizing behavior: A systematic review and search for theoretical mechanisms. Clinical Child and Family Psychology Review, 18, 413–442. doi: 10.1007/s10567-015-0196-4 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Wendland, J. R., Martin, B. J., Kruse, M. R., Lesch, K., & Murphy, D. L. (2006). Simultaneous genotyping of four functional loci of human SLC6A4, with a reappraisal of 5-HTTLPR and rs25531. Molecular Psychiatry, 11, 224–226. doi: 10.1038/sj.mp.4001789 PubMedCrossRefGoogle Scholar
  130. Williams, R. J., Pelton, R. B., & Siegel, F. L. (1962). Individuality as exhibited by inbred animals; its implications for human behavior. Proceedings of the National Academy of Sciences, 48, 1461–1466. doi: 10.1073/pnas.48.8.1461 CrossRefGoogle Scholar
  131. Youngson, N. A., & Whitelaw, E. (2008). Transgenerational epigenetic effects. Annual Review of Genomics and Human Genetics, 9, 233–257. doi: 10.1146/annurev.genom.9.081307.164445
  132. Zou, W., & Zeng, Z. (2009). Multiple interval mapping for gene expression QTL analysis. Genetica, 137, 125–134. doi: 10.1007/s10709-009-9365-z

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Animal EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands

Personalised recommendations