Software Agents in Retinal Vessels Classification
- 557 Downloads
Abstract
This article presents a methodology for the classification of retinal vessels based on agreement technologies and artificial vision. Some studies have demonstrated a direct relationship between the information gathered from retinal images and certain pathologies such as hypertension or diabetes. There are different works that present methodologies based on image processing algorithms to extract that information, but there is no globally accepted methodology to obtain the information automatically, which is the objective of this work. The proposed methodology has been evaluated by one expert user and compared with other existing free software with similar features.
Keywords
Agents Agreement technologies Retinal vessels Visual analysis e-HealthNotes
Acknowledgments
This work was carried out under the frame of the project with Ref. “TIN2015-65515-C4-3-R”. The research of Pablo Chamoso has been financed by the Regional Ministry of Education in Castilla y León and the European Social Fund (EDU/310/2015).
References
- 1.Li, Q., Zhu, P., Huang, F., Lin, F., Yuan, Y., Gao, Z., Chen, F.: The relationship of retinal vessel diameters and fractal dimensions with blood pressure and cardiovascular risk factors. J. Am. Coll. Cardiol. 66(16 S), 1–10 (2015)CrossRefGoogle Scholar
- 2.McGeechan, K., Liew, G., Macaskill, P., Irwig, L., Klein, R., Klein, B.E., Wang, J.J., Mitchell, P., Vingerling, J.R., Dejong, P.T., Witteman, J.C., Breteler, M.M., Shaw, J., Zimmet, P., Wong, T.Y.: Meta-analysis: retinal vessel caliber and risk for coronary heart disease. Ann. Intern. Med. 151(6), 404–413 (2009)CrossRefGoogle Scholar
- 3.Chamoso, P., Pérez-Ramos, H., García-García, Á.: Supervised methodology to obtain retinal vessels caliber. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 3(4), 48–57 (2014)CrossRefGoogle Scholar
- 4.Tanabe, Y., Kawasaki, R., Wang, J.J., Wong, T.Y., Mitchell, P., Daimon, M., Yamashita, H.: Retinal arteriolar narrowing predicts 5-year risk of hypertension in Japanese people: the Funagata study. Microcirculation 17(2), 94–102 (2010)CrossRefGoogle Scholar
- 5.Yatsuya, H., Folsom, A.R., Wong, T.Y., Klein, R., Klein, B.E., Sharrett, A.R., ARIC Study Investigators: Retinal microvascular abnormalities and risk of lacunar stroke atherosclerosis risk in communities study. Stroke 41(7), 1349–1355 (2010)Google Scholar
- 6.Wong, T.Y., Duncan, B.B., Golden, S.H., Klein, R., Couper, D.J., Klein, B.E., Hubbard, L.D., Sharrett, A.R., Schmidt, M.I.: Associations between the metabolic syndrome and retinal microvascular signs: the atherosclerosis risk in communities study. Investig. Ophthalmol. Vis. Sci. 45(9), 2949–2954 (2004)CrossRefGoogle Scholar
- 7.Daxer, A.: The fractal geometry of proliferative diabetic retinopathy: implications for the diagnosis and the process of retinal vasculogenesis. Curr. Eye Res. 12(12), 1103–1109 (1993)CrossRefGoogle Scholar
- 8.Zana, F., Klein, J.C.: Robust segmentation of vessels from retinal angiography. In: 1997 13th International Conference on Digital Signal Processing Proceedings, DSP 1997, vol. 2, pp. 1087–1090. IEEE (1997)Google Scholar
- 9.Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images-a survey. Comput. Methods Programs Biomed. 108(1), 407–433 (2012)CrossRefGoogle Scholar
- 10.Soille, P.: Principles and Applications. Springer Science & Business Media, Berlin (2013)zbMATHGoogle Scholar
- 11.Chapman, N., Witt, N., Gao, X., Bharath, A.A., Stanton, A.V., Thom, S.A., Hughes, A.D.: Computer algorithms for the automated measurement of retinal arteriolar diameters. Br. J. Ophthalmol. 85(1), 74–79 (2001)CrossRefGoogle Scholar
- 12.Martinez-Perez, M.E., Hughes, A.D., Thom, S.A., Bharath, A.A., Parker, K.H.: Segmentation of blood vessels from red-free and fluorescein retinal images. Med. Image Anal. 11(1), 47–61 (2007)CrossRefGoogle Scholar
- 13.Ege, B.M., Hejlesen, O.K., Larsen, O.V., Møller, K., Jennings, B., Kerr, D., Cavan, D.A.: Screening for diabetic retinopathy using computer based image analysis and statistical classification. Comput. Methods Programs Biomed. 62(3), 165–175 (2000)CrossRefGoogle Scholar
- 14.Winder, R.J., Morrow, P.J., McRitchie, I.N., Bailie, J.R., Hart, P.M.: Algorithms for digital image processing in diabetic retinopathy. Comput. Med. Imaging Graph. 33(8), 608–622 (2009)CrossRefGoogle Scholar
- 15.García-Ortiz, L., Recio-Rodríguez, J.I., Parra-Sanchez, J., Elena, L.J.G., Patino-Alonso, M.C., Agudo-Conde, C., Rodríguez-Sánchez, E., Gómez-Marcos, M.A.: A new tool to assess retinal vessel caliber. Reliability and validity of measures and their relationship with cardiovascular risk. J. Hypertens. 30(4), 770–777 (2012)CrossRefGoogle Scholar
- 16.Furmankiewicz, M., Sołtysik-Piorunkiewicz, A., Ziuziański, P.: Artificial intelligence systems for knowledge management in e-health: the study of intelligent software agents. In: Latest Trends on Systems: The Proceedings of 18th International Conference on Systems, Santorini Island, Greece, pp. 551–556 (2014)Google Scholar
- 17.Ossowski, S., Sierra, C., Botti, V.: Agreement technologies: a computing perspective. In: Ossowski, S. (ed.) Agreement Technologies, pp. 3–16. Springer Science+Business Media, Dordrecht (2013). doi: 10.1007/978-94-007-5583-3_1 CrossRefGoogle Scholar
- 18.Rodríguez, S., De Paz, Y., Bajo, J., Corchado, J.M.: Social-based planning model for multiagent systems. Expert Syst. Appl. 38(10), 13005–13023 (2011)CrossRefGoogle Scholar
- 19.Sánchez, A., Villarrubia, G., Zato, C., Rodríguez, S., Chamoso, P.: A gateway protocol based on FIPA-ACL for the new agent platform PANGEA. In: Pérez, J., et al. (eds.) Trends in Practical Applications of Agents and Multiagent Systems. AISC, pp. 41–51. Springer International Publishing, Cham (2013). doi: 10.1007/978-3-319-00563-8_6 CrossRefGoogle Scholar
- 20.Castelfranchi, C., Miceli, M., Cesta, A.: Dependence relations among autonomous agents. In: Decentralized AI, vol. 3, pp. 215–227 (1992)Google Scholar
- 21.Corchado, J.M., Laza, R.: Constructing deliberative agents with case-based reasoning technology. Int. J. Intell. Syst. 18, 1227–1241 (2003). doi: 10.1002/int.10138 CrossRefGoogle Scholar
- 22.Corchado, J.M., Glez-Bedia, M., De Paz, Y., Bajo, J., De Paz, J.F.: Replanning mechanism for deliberative agents in dynamic changing environments. Comput. Intell. 24(2), 77–107 (2008)MathSciNetCrossRefGoogle Scholar
- 23.Garcia-Ortiz, L., Perez-Ramos, H., Chamoso-Santos, P., Recio-Rodriguez, J.I., Garcia-Garcia, A., Maderuelo-Fernandez, J.A., Gomez-Sanchez, L., Martínez-Perez, P., Rodriguez-Martin, C., De Cabo-Laso, A., Sanchez-Salgado, B., Rodríguez-González, S., De Paz-Santana, J.F., Corchado-Rodríguez, J.M., Gomez-Marcos, M.A.: Automatic image analyzer to assess retinal vessel caliber (ALTAIR) tool validation for the analysis of retinal vessels. J. Hypertens. 34, e160 (2016)CrossRefGoogle Scholar
- 24.Rahwan, I., Simari, G.: Argumentation in Artificial Intelligence. Springer, Heidelberg (2009)Google Scholar
- 25.Walton, D., Reed, C., Macagno, F.: Argumentation Schemes. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
- 26.Heras, S., Jordán, J., Botti, V., Julián, V.: Argue to agree: a case-based argumentation approach. Int. J. Approx. Reason. 54(1), 82–108 (2013)CrossRefzbMATHGoogle Scholar