Learning Thresholds in Formal Concept Analysis

  • Uta Priss
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10308)


This paper views Formal Concept Analysis (FCA) from an educational perspective. Novice users of FCA who are not mathematicians might find diagrams of concept lattices counter-intuitive and challenging to read. According to educational theory, learning thresholds are concepts that are difficult to learn and easy to be misunderstood. Experts of a domain are often not aware of such learning thresholds. This paper explores learning thresholds occurring in FCA teaching material drawing on examples from a discrete structures class taught to first year computer science students.


Mathematical Concept Formal Concept Concept Lattice Formal Context Formal Concept Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Almstrum, V.L., Henderson, P.B., Harvey, V., Heeren, C., Marion, W., Riedesel, C., Soh, L.K., Tew, A.E.: Concept inventories in computer science for the topic discrete mathematics. ACM SIGCSE Bull. 38(4), 132–145 (2006)CrossRefGoogle Scholar
  2. Amalric, M., Dehaene, S.: Origins of the brain networks for advanced mathematics in expert mathematicians. Proc. Natl. Acad. Sci. 113(18), 4909–4917 (2016)CrossRefGoogle Scholar
  3. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  4. Edwards, B.S., Ward, M.B.: Surprises from mathematics education research: student (mis)use of mathematical definitions. Am. Math. Mon. 111(5), 411–424 (2004)CrossRefzbMATHGoogle Scholar
  5. Eklund, P., Ducrou, J., Brawn, P.: Concept lattices for information visualization: can novices read line-diagrams? In: Eklund, P. (ed.) ICFCA 2004. LNCS, vol. 2961, pp. 57–73. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24651-0_7 CrossRefGoogle Scholar
  6. Goguen, J.: An introduction to algebraic semiotics, with application to user interface design. In: Nehaniv, C.L. (ed.) CMAA 1998. LNCS, vol. 1562, pp. 242–291. Springer, Heidelberg (1999). doi: 10.1007/3-540-48834-0_15 CrossRefGoogle Scholar
  7. Kaminski, J.A., Sloutsky, V.M., Heckler, A.F.: The advantage of abstract examples in learning math. Science 320(5875), 454–455 (2008)CrossRefGoogle Scholar
  8. Lyons, J.: Introduction to Theoretical Linguistics. Cambridge University Press, Cambridge (1968)CrossRefGoogle Scholar
  9. Meyer, J.H.F., Land, R.: Threshold concepts and troublesome knowledge 1 - linkages to ways of thinking and practising. In: Rust, C. (ed.) Improving Student Learning - Ten Years On. OCSLD, Oxford (2003)Google Scholar
  10. Moore, R.C.: Making the transition to formal proof. Educ. Stud. Math. 27(3), 249–266 (1994)CrossRefGoogle Scholar
  11. Presmeg, N.C.: Research on visualization in learning and teaching mathematics. In: Handbook of Research on the Psychology of Mathematics Education, pp. 205–235 (2006)Google Scholar
  12. Priss, U.: Associative and formal concepts. In: Priss, U., Corbett, D., Angelova, G. (eds.) ICCS-ConceptStruct 2002. LNCS, vol. 2393, pp. 354–368. Springer, Heidelberg (2002). doi: 10.1007/3-540-45483-7_27 CrossRefGoogle Scholar
  13. Priss, U.: A semiotic-conceptual analysis of conceptual learning. In: Haemmerlé, O., Stapleton, G., Faron Zucker, C. (eds.) ICCS 2016. LNCS, vol. 9717, pp. 122–136. Springer, Cham (2016). doi: 10.1007/978-3-319-40985-6_10 Google Scholar
  14. Priss, U.: Semiotic-conceptual analysis: a proposal. Int. J. Gen. Syst. (2017, to appear)Google Scholar
  15. Rosch, E.: Natural categories. Cogn. Psychol. 4, 328–350 (1973)CrossRefGoogle Scholar
  16. Spangenberg, N., Wolff, K.E.: Datenreduktion durch die Formale Begriffsanalyse von Repertory Grids. In: Scheer, J.W., Catina, A. (eds.) Einführung in die Repertory Grid Technik. Klinische Forschung und Praxis 2, pp. 38–54. Verlag Hans Huber (1993)Google Scholar
  17. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht-Boston (1982)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Zentrum für erfolgreiches Lehren und LernenOstfalia University of Applied SciencesWolfenbüttelGermany

Personalised recommendations