Advertisement

Discrete Newton’s Algorithm for Parametric Submodular Function Minimization

  • Michel X. GoemansEmail author
  • Swati Gupta
  • Patrick Jaillet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10328)

Abstract

We consider the line search problem in a submodular polyhedron \(P(f)\subseteq {\mathbb {R}}^n\): Given an arbitrary \(a\in {\mathbb {R}}^n\) and \(x_0\in P(f)\), compute \(\max \{\delta : x_0+\delta a\in P(f)\}\). The use of the discrete Newton’s algorithm for this line search problem is very natural, but no strongly polynomial bound on its number of iterations was known (Iwata 2008). We solve this open problem by providing a quadratic bound of \(n^2 + O(n \log ^2 n)\) on its number of iterations. Our result considerably improves upon the only other known strongly polynomial time algorithm, which is based on Megiddo’s parametric search framework and which requires \({\tilde{O}}(n^8)\) submodular function minimizations (Nagano 2007). As a by-product of our study, we prove (tight) bounds on the length of chains of ring families and geometrically increasing sequences of sets, which might be of independent interest.

Keywords

Discrete Newton’s algorithm Submodular functions Line search Ring families Geometrically increasing sequence of sets Fractional combinatorial optimization 

References

  1. Freund, R.M., Grigas, P., Mazumder, R.: An extended Frank-Wolfe method with “In-Face" directions, its application to low-rank matrix completion (2015). arXiv:1511.02204
  2. Håstad, J.: On the size of weights for threshold gates. SIAM J. Discrete Math. 7(3), 484–492 (1994)MathSciNetCrossRefGoogle Scholar
  3. Iwata, S.: Submodular function minimization. Math. Program. 112(1), 45–64 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Iwata, S., Murota, K., Shigeno, M.: A fast parametric submodular intersection algorithm for strong map sequences. Math. Oper. Res. 22(4), 803–813 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. Iwata, S., Orlin, J.B.: A simple combinatorial algorithm for submodular function minimization. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1230–1237. Society for Industrial and Applied Mathematics (2009)Google Scholar
  6. Lee, Y.T., Sidford, A., Wong, S.C.: A faster cutting plane method and its implications for combinatorial and convex optimization. In: Foundations of Computer Science (FOCS), pp. 1049–1065. IEEE (2015)Google Scholar
  7. McCormick, S.T., Ervolina, T.R.: Computing maximum mean cuts. Discrete Appl. Math. 52(1), 53–70 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Mulmuley, K.: Lower bounds in a parallel model without bit operations. SIAM J. Comput. 28(4), 1460–1509 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Nagano, K.: A strongly polynomial algorithm for line search in submodular polyhedra. Discrete Optim. 4(3), 349–359 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Radzik, T.: Fractional combinatorial optimization. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 429–478. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. Topkis, D.M.: Minimizing a submodular function on a lattice. Oper. Res. 26(2), 305–321 (1978)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Michel X. Goemans
    • 1
    Email author
  • Swati Gupta
    • 1
  • Patrick Jaillet
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations