Skip to main content

Abstract

Biological control is an alternative to chemical control of plant-parasitic nematodes. This is largely due to public demand for biologically-based and environment-friendly management options for safer pest control. Such demands have had an important impact on biological control research expansion and funding. However, the development of any strain of a biological control agent for nematode control requires many years of research, experimentation, validation and safe-use tests before the biological control agent becomes available to farmers or is further developed by industry as a commercial biopesticide or bionematicide. Biological control potential can be unconstrained when biological control agents are used in combination with compatible integrated pest management tactics, which may include some chemical products and other biological control agent-based products that are currently available on the biopesticide market. This chapter presents part of the history behind some of the initial studies that help to illustrate the scientific work carried out by the many scientists who laid the foundations and helped to develop Pochonia chlamydosporia as a viable, sustainable alternative to chemical control in the integrated management of plant-parasitic nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Verticillium chlamydosporium is a synonym of Pochonia chlamydosporia, the current valid name of the fungus.

References

  • Barbosa, P. (1998). Agroecosystems and conservation biological control. In P. Barbosa (Ed.), Conservative Biological control (pp. 39–54). San Diego: Academic.

    Chapter  Google Scholar 

  • Barron, G. L. (1977). The nematode-destroying fungi, Topics in Mycobiology No. 1. Guelph: Canadian Biological Publications.

    Google Scholar 

  • Bordallo, J. J., Lopez-Llorca, L. V., Salinas, J., et al. (2002). Colonization of plant roots by egg-parasitic and nematode-trapping fungi. The New Phytologist, 154, 491–499.

    Article  Google Scholar 

  • Escudero, N., & Lopez-Llorca, L. V. (2012). Effects of plant growth and root-knot nematode infection of an endophytic GFP transformant on the nematophagous fungus Pochonia chlamydosporia. Symbiosis, 57, 33–42.

    Article  Google Scholar 

  • Escudero, N., Ferreira, S. R., Lopez-Moya, F., et al. (2016). Chitosan enhances parasitism of Meloidogyne javanica eggs by the nematophagous fungus Pochonia chlamydosporia. Fungal Biology, 120, 572–585.

    Article  CAS  PubMed  Google Scholar 

  • Evans, K., & Manzanilla-López, R. (2017). The history of the nematology Department at Rothamsted. The Annals of Applied Biology, 170, 4–44.

    Article  Google Scholar 

  • Finetti-Sialer, M. M., & Manzanilla-López, R. H. (2011). Exploiting “-omics” and molecular approaches in plant nematology research. In R. Rodríguez-Herrera, C. N. Aguilar, J. K. Simpson-Williamson, et al. (Eds.), Phytopathology in the Omics Era, Transworld Research Network (pp. 39–68). Thiruvananthapuram: Research Signpost.

    Google Scholar 

  • Giné, A., Bonmati, M., Sarro, A., et al. (2016). Natural occurrence of fungal egg parasites of root-knot nematodes, Meloidogyne spp. in organic and integrated vegetable production systems in Spain. BioControl, 58, 407–416.

    Article  Google Scholar 

  • Gintis, B. O. G., Morgan-Jones, G., & Rodríguez-Kábana, R. (1982). Mycoflora of young cysts of Heterodera glycines in North Carolina soils. Nematropica, 12, 295–303.

    Google Scholar 

  • Gintis, B. O., Morgan-Jones, G., & Rodríguez-Kábana, R. (1983). Fungi associated with several developmental stages of Heterodera glycines from Alabama field soil. Nematropica, 13, 181–200.

    Google Scholar 

  • Godoy, G., Rodríguez-Kábana, R., & Morgan-Jones, G. (1982). Fungal parasites of Meloidogyne arenaria eggs in an Alabama soil. A mycological survey and greenhouse studies. Nematropica, 13, 201–213.

    Google Scholar 

  • Gowen, S. R. (2002). Integrated management of root-knot nematodes on vegetables in Kenya R 7472 (Za 0324). Final technical report (1 October 1999–30 September 2002). DFID R7472 Crop Protection Programme. Reading, UK, p. 52.

    Google Scholar 

  • Gowen, S. R. (2005). Promotion of sustainable approaches for the management of root-knot nematodes of vegetables in Kenya (R8296 (ZA 0568)). Crop protection programme. Final Report, DFID, p. 39.

    Google Scholar 

  • Hidalgo-Díaz, L. (2004) Registration of biological pesticides in Cuba. In M. N. Wabule, P. N. Ngaruiga, & F. K. Kimmins et al. (Eds.), Registration for biological control agents in Kenya, Proceedings of the Pest Control Products Board/Kenya/Agricultural Research Institute/Department for International Development Crop Protection Programme Workshop, Nakuru, Kenya, 14–16 May 2003. KARI/PCPB, Nairobi, Kenya, and Natural Resources International Ltd., Aylesford, UK, pp. 117–133

    Google Scholar 

  • Jacobs, H., Gray, S. N., & Crump, D. H. (2003). Interactions between nematophagous fungi and consequences for their potential as biological agents for the control of potato cyst nematodes. Mycological Research, 107, 47–56.

    Article  PubMed  Google Scholar 

  • Kerry, B. R. (1991). Preface. In B. R. Kerry, & D. H. Crump (Eds.), Methods for studying nematophagous fungi. Working group “Integrated control of soil pests” (pp. I–II). IOBC/WPRS/Bulletin XIV/2.

    Google Scholar 

  • Kerry, B. R. (2000). Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 38, 423–441.

    Article  CAS  PubMed  Google Scholar 

  • Kerry, B. R., & Bourne, J. (2002). A manual for research on Verticillium chlamydosporium a potential biocontrol agent for root-knot nematodes. Gent: IOBC/WPRS.

    Google Scholar 

  • Kerry B. R., & Crump D. H. (1991). Methods for studying nematophagous fungi. IOBC/WPRS Bulletin XIV (2).

    Google Scholar 

  • Larriba, E., Jaime, M. D. L. A., Carbonell-Caballero, J., et al. (2014). Sequencing and functional analysis of the genome of a nematode egg-parasitic fungus, Pochonia chlamydosporia. Fungal Genetics and Biology, 65, 69–80.

    Article  CAS  PubMed  Google Scholar 

  • Larriba, E., Jaime, M. D. L. A., Nislow, C., et al. (2015). Endophytic colonization of barley (Hordeum vulgare) roots by the nematophagous fungus Pochonia chlamydosporia reveals plant growth promotion and a general defense and stress transcriptomic response. Journal of Plant Research. doi:10.1007/s10265-015-0731-x.

  • Lin, R., Liu, C., Shen, B., et al. (2015). Analysis of the complete mitochondrial genome of Pochonia chlamydosporia suggests a close relationship to the invertebrate-pathogenic fungi in Hypocreales. BMC Microbiology, 15, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez-Llorca, L. V. (1990). Purification and properties of extracellular proteases produced by the nematophagous fungus Verticillium suchlasporium. Canadian Journal of Microbiology, 36, 530–537.

    Article  CAS  Google Scholar 

  • Lopez-Llorca, L. V., & Claugher, D. (1990). Appressoria of the nematophagous fungus Verticillium suchlasporium. Micron and Microscopica Acta, 21, 125–130.

    Article  Google Scholar 

  • Lopez-Llorca, L. V., & Fry, S. C. (1989). Dityrosine and tetratyrosine, potential croos-links in proteins of plant parasitic nematodes. Nematologica, 35, 165–179.

    Article  Google Scholar 

  • Lopez-Llorca, L. V., & Robertson, W. M. (1992a). Ultrastructure of infection of cyst nematode eggs by the nematophagous fungus Verticillium suchlasporium. Nematologica, 39, 65–74.

    Article  Google Scholar 

  • Lopez-Llorca, L. V., & Robertson, W. (1992b). Immunocytochemical localization of a 32 kDa protease from the nematophagous fungus Verticillium suchlasporium in infected nematode eggs. Experimental Mycology, 16, 261–267.

    Article  CAS  Google Scholar 

  • Lopez-Llorca, L. V., Maciá-Vicente, J. G., & Jansson, H. B. (2008). Mode of action and interactions of nematophagous fungi. In A. Ciancio & K. G. Mukerji (Eds.), Integrated management and biocontrol of vegetable and grains crops Nematodes (pp. 51–76). Heidelberg: Springer.

    Google Scholar 

  • Maciá-Vicente, J. G., Jansson, H. B., Talbot, N. J., et al. (2009). Real-time PCR quantification and live-cell imaging of endophytic colonization of barley (Hordeum vulgare) roots by Fusarium equiseti and Pochonia chlamydosporia. The New Phytologist, 182, 213–228.

    Article  PubMed  Google Scholar 

  • Manzanilla-López, R. H., Esteves, I., Finetti-Sialer, M. M., et al. (2013). Pochonia chlamydosporia: Advances and challenges to improve its performance as a biological control agent of sedentary endo-parasitic nematodes. Journal of Nematology, 45, 1–7.

    PubMed  PubMed Central  Google Scholar 

  • Monfort, E., Lopez-Llorca, L. V., Jansson, H. B., et al. (2005). Colonisation of seminal roots of wheat and barley by egg-parasitic nematophagous fungi and their effects on Gaeumannomyces graminis var. tritici and development of root-rot. Soil Biology and Biochemistry, 37, 129–1235.

    Article  Google Scholar 

  • Morgan-Jones, G., & Rodríguez-Kábana, R. (1981). Fungi associated with cysts of Heterodera glycines in an Alabama soil. Nematropica, 11, 69–74.

    Google Scholar 

  • Morgan-Jones, G., & Rodriguez-Kabana, R. (1987). Fungal biocontrol for the management of nematodes. In J. A. Veech & D. W. Dickson (Eds.), Vistas on Nematology: A commemoration of the twenty-fifth anniversary of the Society of Nematologists (pp. 94–99). De Leon Springs: E.O. Painter Printing.

    Google Scholar 

  • Morgan-Jones, G., Godoy, G., & Rodríguez-Kábana, R. (1981a). Verticillium chlamydosporium, fungal parasite of Meloidogyne arenaria females. Nematropica, 11, 115–119.

    Google Scholar 

  • Morgan-Jones, G., Gintis, B. O., & Rodríguez-Kábana, R. (1981b). Fungal colonization of Heterodera glycines cysts in Arkansas, Florida, Mississippi and Missouri soils. Nematropica, 11, 155–163.

    Google Scholar 

  • Morgan-Jones, G., White, J. F., & Rodríguez-Kábana, R. (1983). Phytonematode pathology; ultrastructural studies. I. Parasitism of Meloidogyne arenaria eggs by Verticillium chlamydosporium. Nematropica, 13, 245–260.

    Google Scholar 

  • Morton, C. O., Hirsch, P. R., Peberdy, J. P., et al. (2003). Cloning of and genetic variation in protease VCP1 from the nematophagous fungus Pochonia chlamydosporia. Mycological Research, 107, 38–46.

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Rodríguez, I., Doroteo-Mendoza, A., Franco-Navarro, F., et al. (2007). Isolates of Pochonia chlamydosporia var. chlamydosporia from Mexico as potential biological control agents of Nacobbus aberrans. Nematropica, 37, 127–134.

    Google Scholar 

  • Pyrowolakis, A., Westphal, A., Sikora, R. A., et al. (2002). Identification of root-knot nematode suppressive soils. Applied Soil Ecology, 19, 51–56.

    Article  Google Scholar 

  • Rodríguez-Kábana, R., Morgan-Jones, G., Godoy, G., et al. (1984). Effectiveness of species of Gliocladium, Paecilomyces and Verticillium for control of Meloidogyne arenaria in field soil. Nematropica, 14, 155–170.

    Google Scholar 

  • Segers, R., Butt, T. M., Keen, J. N., et al. (1995). The subtilisins of the invertebrate mycopathogens Verticillium chlamydosporium and Metarhizium anisopliae are serologically and functionally related. FEMS Microbiology Letters, 126, 227–232.

    Article  CAS  PubMed  Google Scholar 

  • Sellitto, V. M., Curto, G., Dallavalle, E., et al. (2016). Effect of Pochonia chlamydosporia-based formulates on the regulation of root-knot nematodes and plant growth response. Frontiers in Life Science, 9(3), 177–181. http:dx.doi.org/101080/21553769.2016.1193827.

    Article  CAS  Google Scholar 

  • Stirling, G. R. (1991). Biological control of plant parasitic nematodes: Progress, problems and prospects. Wallingford: CABI Publishing.

    Google Scholar 

  • Stirling, G. R. (2014). Biological control of plant-parasitic nematodes: Soil ecosystem management in sustainable agriculture (2nd ed.). Croydon: CABI.

    Google Scholar 

  • Timper, P. (2014). Conserving and enhancing biological control of nematodes. Journal of Nematology, 46, 75–89.

    PubMed  PubMed Central  Google Scholar 

  • Tobin, J. D., Haydock, P. P. J., Hare, M. C., et al. (2008). The compatibility of the fungicide azoxistrobin with Pochonia chlamydosporia, a biological control agent for potato cyst nematodes (Globodera spp.) The Annals of Applied Biology, 152, 301–305.

    Article  CAS  Google Scholar 

  • Verdejo-Lucas, S., Ornat, C., Sorribas, F. J., & Stchiegel, A. (2002). Species of root-knot nematodes and fungal egg parasites recovered from vegetables in Almería and Barcelona, Spain. Journal of Nematology, 34, 405–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ward, E., Kerry, B. R., Manzanilla-López, R. H., et al. (2012). The Pochonia chlamydosporia serine protease gene vcp1 is subject to regulation by carbon, nitrogen and pH: Implications for nematode biocontrol. PLoS One, 7(4), e35657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westphal, A., & Becker, J. O. (1999). Biological suppression and natural population decline of Heterodera schachtii in a California field. Phytopathology, 89, 434–440.

    Article  CAS  PubMed  Google Scholar 

  • Westphal, A., & Becker, J. O. (2000). Transfer of biological soil suppressiveness against Heterodera schachtii. Phytopathology, 90, 401–406.

    Article  CAS  PubMed  Google Scholar 

  • Westphal, A., & Becker, J. O. (2001). Components of soil suppressiveness against Heterodera schachtii. Soil Biology and Biochemistry, 33, 9–16.

    Article  CAS  Google Scholar 

  • Zavala-Gonzalez, E. A., Escudero, N., Lopez-Moya, F., et al. (2015). Some isolates of the nematophagous fungus Pochonia chlamydosporia promote root growth and reduce flowering time of tomato. The Annals of Applied Biology, 166, 472–483.

    Article  CAS  Google Scholar 

  • Zavala-González, E. A., Rodríguez-Cazorla, E., Escudero, N., et al. (2017). Arabidopsis thaliana root colonization by the nematophagous fungus Pochonia chlamydosporia is modulated by jasmonate signalling and leads to accelerated flowering and improved yield. The New Phytologist, 213, 351–364.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The information of the MiCoSPa project outputs was kindly provided by Dr. Judith Pell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa H. Manzanilla-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Evans, K., Manzanilla-López, R.H., Lopez-Llorca, L.V. (2017). Introduction (Historical and Overview). In: Manzanilla-López, R., Lopez-Llorca, L. (eds) Perspectives in Sustainable Nematode Management Through Pochonia chlamydosporia Applications for Root and Rhizosphere Health. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-59224-4_1

Download citation

Publish with us

Policies and ethics