Advertisement

Levels of Trace Data for Social and Behavioural Science Research

  • Kevin Crowston
Chapter
Part of the Computational Social Sciences book series (CSS)

Abstract

The explosion of data available from online systems such as social media is creating a wealth of trace data, that is, data that record evidence of human activity. The volume of data available offers great potential to advance social and behavioural science research. However, the data are of a very different kind than more conventional social and behavioural science data, posing challenges to use. This paper adopts a data framework from Earth observation science and applies it to trace data to identify possible issues in analysing trace data. Application of the framework also reveals issues for sharing and reusing data.

Keywords

Data design Data capture Secondary data analysis Behavioral data Human data 

References

  1. Agarwal, R., Gupta, A. K., & Kraut, R. (2008). Editorial overview: The interplay between digital and social networks. Information Systems Research, 19(3), 243–252. https://doi.org/10.1287/isre.1080.0200.CrossRefGoogle Scholar
  2. Boyd, D., & Crawford, K. (2012). Critical questions for big data. Information, Communication & Society, 15(5), 662–679. https://doi.org/10.1080/1369118X.2012.678878.CrossRefGoogle Scholar
  3. Chang, R. M., Kauffman, R. J., & Kwon, Y. (2014). Understanding the paradigm shift to computational social science in the presence of big data. Decision Support Systems, 63, 67–80. https://doi.org/10.1016/j.dss.2013.08.008.CrossRefGoogle Scholar
  4. Crowston, K., Wei, K., Li, Q., Howison, J. (2006). Core and periphery in free/libre and open source software team communications. In Proceedings of Hawai’i International Conference on System System (HICSS-39). Kaua’i.Google Scholar
  5. Crowston, K., Wiggins, A., Howison, J. (2010). Analyzing leadership dynamics in distributed group communication. In Proceedings of Hawaii International Conference on System Sciences (HICSS-43). Lihue. doi:https://doi.org/10.1109/HICSS.2010.62.
  6. Daries, J. P., Reich, J., Waldo, J., Young, E. M., Whittinghill, J., Ho, A. D., Seaton, D. T., & Chuang, I. (2014). Privacy, anonymity, and big data in the social sciences. Communications of the ACM, 57(9), 56–63. https://doi.org/10.1145/2643132.CrossRefGoogle Scholar
  7. Edwards, A., Housley, W., Williams, M., Sloan, L., & Williams, M. (2013). Digital social research, social media and the sociological imagination: Surrogacy, augmentation and re-orientation. International Journal of Social Research Methodology, 16(3), 245–260. https://doi.org/ 10.1080/13645579.2013.774185.CrossRefGoogle Scholar
  8. Freelon, D. (2014). On the interpretation of digital trace data in communication and social computing research. Journal of Broadcasting & Electronic Media, 58(1), 59–75. https://doi.org/10.1080/08838151.2013.875018.CrossRefGoogle Scholar
  9. Hemphill, L., & Roback, A. J. (2014). Tweet acts: How constituents lobby congress via Twitter. In Proceedings of ACM conference on computer supported cooperative work & social computing (pp. 1200–1210). Baltimore.Google Scholar
  10. Howison, J., Wiggins, A., & Crowston, K. (2011). Validity issues in the use of social network analysis for the study of online communities. Journal of the Association for Information Systems, 12(12), 323–346.Google Scholar
  11. Krippendorff, K. (2004). Content analysis: An introduction to its methodology. Newbury Park: Sage.Google Scholar
  12. Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A. L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., & Van Alstyne, M. (2009). Life in the network: The coming age of computational social science. Science, 323(5915), 721–723. https://doi.org/10.1126/science.1167742.CrossRefGoogle Scholar
  13. Liang, H., & Fu, K.-W. (2015). Testing propositions derived from twitter studies: Generalization and replication in computational social science. PloS One, 10(8), e0134270. https://doi.org/10.1371/ journal.pone.0134270.CrossRefGoogle Scholar
  14. Manovich, L. (2012). Trending: The promises and the challenges of big social data. In M. K. Gold (Ed.), Debates in the digital humanities (pp. 460–475). Minneapolis: University of Minnesota Press.CrossRefGoogle Scholar
  15. McClelland, C. A. (1967). Event interaction analysis in the setting of quantitative international relations research. Los Angeles: Department of Political Science, University of Southern California.Google Scholar
  16. McClelland, C. A. (1983). Let the user beware. International Studies Quarterly, 27(2), 169–177. https://doi.org/10.2307/2600544.CrossRefGoogle Scholar
  17. Panciera, K., Priedhorsky, R., Erickson, T., Terveen, L. (2010). Lurking? Cyclopaths? A quantitative lifecyle analysis of user behavior in a geowiki. In Proceedings of ACM conference on Computer-Human Interaction (CHI). Atlanta.Google Scholar
  18. Parkinson, C. L., Ward, A., & King, M. D. (Eds.). (2006). Earth science reference handbook: A guide to NASA’s earth science program and earth observing satellite missions. Washington, DC: National Aeronautics and Space Administration. Available from: http://eospso.gsfc.nasa.gov/sites/default/files/publications/2006ReferenceHandbook.pdf.Google Scholar
  19. Veen, T. (2008). Event data: A method for analysing political behaviour in the EU. In Proceedings of prepared for the fourth Pan-European conference on EU Politics, Riga, Latvia. Available from: http://www.jhubc.it/ecpr-riga/virtualpaperroom/002.pdf.
  20. Watts, D. J. (2007). A twenty-first century science. Nature, 445(7127), 489–489. https://doi.org/ 10.1038/445489a.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Syracuse University School of Information StudiesSyracuseUSA

Personalised recommendations