Role of Ethylene and Bacterial ACC-Deaminase in Nodulation of Legumes

  • Azeem Khalid
  • Zulfiqar Ahmad
  • Shahid Mahmood
  • Tariq Mahmood
  • Muhammad Imran


Rhizobia-legume symbiosis is a complex process involving a number of plant and bacterial genes that lead to the formation and development of root nodules. Plant hormone ethylene plays an important role in nodule development and nodule signaling networks in response to a wide range of biotic and abiotic stresses. Ethylene is known as a negative regulator of nodulation. Inoculation of rhizobia leads to a temporal stimulation of ethylene production that suppresses nodule formation. In contrast, inhibitors of ethylene synthesis or its physiological action promote nodule formation in legumes. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase is a biological inhibitor of ethylene synthesis. The rhizosphere bacteria containing ACC-deaminase can increase nodulation in legumes by degrading ACC (an immediate precursor of ethylene) and, thus, by lowering ethylene concentration in the plant. Similarly, some rhizobia also have shown ACC-deaminase activity and improvement in nodulation by regulating the concentration of ethylene in plant tissues. In this chapter, the role of ethylene and bacterial ACC-deaminase in nodulation of legumes is reviewed and discussed.


ACC-deaminase Ethylene Legumes Nodulation Chemical inhibitors Biological inhibitors 



The authors greatly acknowledge the contributions of Professor Muhammad Arshad (Late) in the field of plant hormones and bacterial ACC-deaminase biotechnology. Professor Arshad, a leading scientist and highly respected academician world over, laid the foundation of this chapter when he and his team of eminent teachers contributed to the first edition of the book Microbes for Legume Improvement, published in 2010. As editor of this book, I (MSK) pay a great tribute to Prof. Arshad for his timely and outstanding contribution to the first edition of this book.


  1. Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167PubMedCrossRefGoogle Scholar
  2. Andrea JF, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, Dixon DG, Glick BR (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Poll 147:540–545CrossRefGoogle Scholar
  3. Arshad M, Frakenberger WT Jr (2002) Ethylene: agricultural sources and applications. Kluwer/Academic Publishers, New YorkCrossRefGoogle Scholar
  4. Baig KS, Arshad M, Khalid A, Hussain S, Abbas MN, Imran M (2014) Improving growth and yield of maize through bioinoculants carrying auxin production and phosphate solubilizing activity. Soil Environ 33:159–168Google Scholar
  5. Bari R, Jones JDG (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69:473–488PubMedCrossRefGoogle Scholar
  6. Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2014) ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J Plant Physiol 171(11):884–894PubMedCrossRefGoogle Scholar
  7. Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frickey T, Weiller G, He J, Dai X, Zhao PX, Tang Y, Udvardi MK (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J 55:504–513PubMedCrossRefGoogle Scholar
  8. Bonfante P, Anca A (2009) Plants mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383PubMedCrossRefGoogle Scholar
  9. Caba JM, Recalde L, Ligero F (1998) Nitrate-induced ethylene biosynthesis and the control of nodulation in alfalfa. Plant Cell Environ 21:87–93CrossRefGoogle Scholar
  10. Caba JM, Poveda JL, Gresshoff PM, Ligero F (1999) Differential sensitivity of nodulation to ethylene in soybean cv. Bragg and a super-nodulating mutant. New Phytol 142:233–242CrossRefGoogle Scholar
  11. Chan PK, Biswas B, Gresshoff PM (2013) Classical ethylene insensitive mutants of the Arabidopsis EIN2 orthologue lack the expected ‘hypernodulation’ response in lotus japonicas. J Integr Plant Biol 55:395–408PubMedCrossRefGoogle Scholar
  12. Charon C, Sousa C, Crespi M, Kondorosi A (1999) Alteration of enod40 expression modifies Medicago truncatula root nodule development induced by Sinorhizobium meliloti. Plant J 11:1953–1965Google Scholar
  13. Chaudhary D, Sindhu SS (2015) Inducing salinity tolerance in chickpea (Cicer arietinum L.) by inoculation of 1-aminocyclopropane-1-carboxylic acid deaminase-containing Mesorhizobium strains. Afr J Microbiol Res 9:117–124CrossRefGoogle Scholar
  14. Csukasi F, Merchante D, Valpuesta V (2009) Modification of plant hormone levels and signaling as a tool in plant biotechnology. Biotechnol J 4:1293–1304PubMedCrossRefGoogle Scholar
  15. D’Haeze W, Rycke RD, Mathis R, Goormachtig S, Pagnotta S, Verplancke C, Capoen W, Holsters M (2003) Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semi aquatic legume. PNAS 100:11789–11794PubMedPubMedCentralCrossRefGoogle Scholar
  16. Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth promoting rhizobacteria. Microbiol Res 159:371–394PubMedCrossRefGoogle Scholar
  17. Ding Y, Oldroyd GED (2009) Positioning the nodule, the hormone dictum. Plant Signal Behav 4:89–93PubMedPubMedCentralCrossRefGoogle Scholar
  18. Drennan DSH, Norton C (1972) The effect of ethrel on nodulation in Pisum sativum L. Plant and Soil 36:53–57CrossRefGoogle Scholar
  19. Duan J, Müller K, Charles T, Vesely S, Glick BR (2009) 1Aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from Southern Saskatchewan. Microb Ecol 57:423–436PubMedCrossRefGoogle Scholar
  20. Duodu S, Bhuvaneswari TV, Stokkermans TJ, Peters NK (1999) A positive role for rhizobitoxine in Rhizobium-legume symbiosis. Mol Plant Microbe Interact 12:1082–1089CrossRefGoogle Scholar
  21. Dupont L, Alloing G, Pierre O, El Msehli S, Hopkins J, Hérouart D, Frendo P (2012) The legume root nodule: from symbiotic nitrogen fixation to senescence. In: Nagata T (ed) Senescence. InTech, pp 137–168Google Scholar
  22. El Yahyaoui F, Kuster F, Ben Amor H, Hohnjec B, Puhler N, Becker A, Gouzy A, Vernie J, Gough T, Niebel C, Godiard A, Gamas PL (2004) Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiol 136:3159–3176PubMedPubMedCentralCrossRefGoogle Scholar
  23. El-Maarouf-Bouteau H, Sajjad Y, Bazin J, Langlade N, Cristescu SM, Balzergue S, Baudouin E, Bailly C (2015) Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant Cell Environ 38:364–374PubMedCrossRefGoogle Scholar
  24. Farajzadeh D, Aliasgharzad N, Bashir NS, Yakhchali B (2010) Cloning and characterization of a plasmid encoded ACC deaminase from an indigenous Pseudomonas fluorescens FY32. Curr Microbiol 61:37–43PubMedCrossRefGoogle Scholar
  25. Fearn JC, LaRue TA (1991) Ethylene inhibitors restore nodulation of sim-5 mutants of Pisum sativum L. cv. Sparkle. Plant Physiol 96:239–246PubMedPubMedCentralCrossRefGoogle Scholar
  26. Ferguson BJ, Indrasumunar A, Hayashi S, Lin M, Lin Y, Reid DE, Gresshoff PM (2010) Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol 52:61–76PubMedCrossRefGoogle Scholar
  27. Ferguson BJ, Foo E, Ross JJ, Reid JB (2011) Relationship between gibberellin, ethylene and nodulation in Pisum sativum. New Phytol 189:829–842PubMedCrossRefGoogle Scholar
  28. Ferguson BJ, Mathesius U (2014) Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol 40:770–790PubMedCrossRefGoogle Scholar
  29. Fernandez-Lopez M, Goormachtig S, Gao M, D’Haeze W, Van Montagu M, Holsters M (1998) Ethylene-mediated phenotypic plasticity in root nodule development on Sesbania rostrata. Proc Natl Acad Sci 95:12724–12728Google Scholar
  30. Foo E, McAdam EL, Weller JL, Reid JB (2016) Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea. J Exp Bot 67:2413–2424PubMedPubMedCentralCrossRefGoogle Scholar
  31. Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242CrossRefGoogle Scholar
  32. Gontia-Mishra I, Sasidharan S, Tiwari S (2014) Recent developments in use of 1-aminocyclopropane-1carboxylate (ACC) deaminase for conferring tolerance to biotic and abiotic stress. Biotechnol Lett 36:889–898PubMedCrossRefGoogle Scholar
  33. Gonzalez-Rizzo S, Crespi M, Frugler F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–2693PubMedPubMedCentralCrossRefGoogle Scholar
  34. Goormachtig S, Capoen W, James EK, Holsters M (2004) Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation. PNAS 101:6303–6308PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. Biotech 5:355–377Google Scholar
  36. Gour K, Patel BS, Mehta RS (2012) Yield and nodulation of fenugreek (Trigonella foenumgraecum) as influenced by growth regulators and vermi-wash. Indian J Agr Res 46:91–93Google Scholar
  37. Gresshoff PM, Lohar D, Chan PK, Biswas B, Jiang Q, Reid D, Ferguson B, Stacey G (2009) Genetic analysis of ethylene regulation of legume nodulation. Plant Signal Behav 4:818–823PubMedPubMedCentralCrossRefGoogle Scholar
  38. Grichko VP, Glick BR (2000) Identification of DNA sequences that regulate the expression of the Enterobacter cloacae UW4 1-aminocyclopropane-1-carboxylic acid deaminase gene. Can J Microbiol 46:1159–1165PubMedGoogle Scholar
  39. Guinel FC, Sloetjes LL (2000) Ethylene is involved in the nodulation phenotype of Pisum sativum R50 (sym16), a pleiotropicmutant that nodulates poorly and has pale green leaves. J Exp Bot 51:885–894PubMedGoogle Scholar
  40. Guinel FC, Geil RD (2002) A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Can J Bot 80(7):695–720CrossRefGoogle Scholar
  41. Heckmann AB, Sandal N, Bek AS, Madsen LH, Jurkiewicz A, Nielsen MW, Stougaard J (2011) Cytokinin induction of root nodule primordia in Lotus japonicus is regulated by a mechanism operating in the root cortex. Mol Plant Microbe Interact 24:1385–1395PubMedCrossRefGoogle Scholar
  42. Heidstra RW, Yang WC, Yalcin Y, Peck S, Emons AM, van Kammen A, Bisseling T (1997) Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. Development 124:1781–1787PubMedGoogle Scholar
  43. Imin N, Mohd-Radzman NA, Ogilvie HA, Djordjevic MA (2013) The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. J Exp Bot 64:5395–5409PubMedCrossRefGoogle Scholar
  44. Iqbal N, Trivellini A, Masood A, Ferrante A, Khan NA (2013) Current understanding on ethylene signaling in plants: the influence of nutrient availability. Plant Physiol Biochem 73:128–138PubMedCrossRefGoogle Scholar
  45. Jones JM, Clairmont L, Macdonald ES, Weiner CA, Emery RN, Guinel FC (2015) E151 (sym15), a pleiotropic mutant of pea (Pisum sativum L.), displays low nodule number, enhanced mycorrhizae, delayed lateral root emergence, and high root cytokinin levels. J Exp Bot 66:4047–4059PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H, Kawaharada Y, Nakamura Y, Watanabe A, Kawashima K, Ono A, Shimizu Y (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183CrossRefGoogle Scholar
  48. Kawaharada Y, James EK, Kelly S, Sandal N, Stougaard J (2017) The ethylene responsive factor required for nodulation 1 (ERN1) transcription factor is required for infection-thread formation in Lotus japonicus. Mol Plant Microbe Interact 30:194–204Google Scholar
  49. Khalid A, Arshad M, Shaharoona B, Mahmood T (2009) Plant growth promoting rhizobacteria and sustainable agriculture. In: Khan MS, Zaidi A, Musarat J (eds) Microbial strategies for crop improvement. Springer-Verleg, Berlin, pp 133–160CrossRefGoogle Scholar
  50. Khan MS, Zaidi A, Musarrat J (2009) Microbial strategies for crop improvement. Springer-Verleg, BerlinCrossRefGoogle Scholar
  51. Kong Z, Glick BR, Duan J et al (2015) Effects of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-over producing Sinorhizobium meliloti on plant growth and copper tolerance of Medicago lupulina. Plant Soil 391:383–398CrossRefGoogle Scholar
  52. Kuhn S, Stiens M, Puhler A, Schluter A (2008) Prevalence of pSmeSM11a-like plasmids in indigenous Sinorhizobium meliloti strains isolated in the course of a field release experiment with genetically modified S. meliloti strains. FEMS Microbiol Ecol 63:118–131PubMedCrossRefGoogle Scholar
  53. Kumar V, Giridhar P, Ravishankar GA (2009) AgNO3-a potential regulator of ethylene activity and plant growth modulator. Electron J Biotechnol 12:1–15CrossRefGoogle Scholar
  54. Kuykendall LD, Saxena B, Devine TE, Udell SE (1992) Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505CrossRefGoogle Scholar
  55. Lee KH, LaRue TA (1992a) Inhibition of nodulation of pea by ethylene. Plant Physiol 99:108CrossRefGoogle Scholar
  56. Lee KH, LaRue TA (1992b) Exogenous ethylene inhibits nodulation of Pisum sativum L. cv Sparkle. Plant Physiol 100:11759–11763Google Scholar
  57. Lee KH, LaRue TA (1992c) Ethylene as a possible mediator of light and nitrate induced inhibition of nodulation of Pisum sativum L. cv. Sparkle. Plant Physiol 100:1334–1338PubMedPubMedCentralCrossRefGoogle Scholar
  58. Li X, Lei M, Yan Z, Wang Q, Chen A, Sun J, Luo D, Wang Y (2014) The REL3-mediated TAS3 ta-siRNA pathway integrates auxin and ethylene signaling to regulate nodulation in Lotus japonicus. New Phytol 201:531–544PubMedCrossRefGoogle Scholar
  59. Ligero F, Lluch C, Olivares J (1987) Evolution of ethylene from roots and nodulation rate of alfalfa (Medicago sativa L.) plants inoculated with Rhizobium meliloti as affected by the presence of nitrate. J Plant Physiol 129:461–467CrossRefGoogle Scholar
  60. Ligero F, Caba JM, Lluch C, Olivares J (1991) Nitrate inhibition of nodulation can be overcome by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol 97:1221–1225PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ligero F, Poveda JL, Gresshoff PM, Caba JM (1999) Nitrate inoculation in enhanced ethylene biosynthesis in soybean roots as a possible mediator of nodulation control. J Plant Physiol 154:482–488CrossRefGoogle Scholar
  62. Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lohar D, Stiller J, Kam J, Stacey G, Gresshoff PM (2009) Ethylene insensitivity conferred by a mutated Arabidopsis ethylene receptor gene alters nodulation in transgenic Lotus japonicus. Ann Bot 104:277–285PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lorteau MA, Ferguson BJ, Guinel FC (2001) Effects of cytokinin on ethylene production and nodulation in pea (Pisum sativum) cv. Sparkle. Physiol Planta 112:421–428Google Scholar
  65. Lucas S, Han J, Lapidus A et al (2011) Complete sequence of plasmid 1 of Sinorhizobium meliloti BL225C. Submitted (09MAY-2011) to the EMBL/GenBank/DDBJ databasesGoogle Scholar
  66. Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402PubMedPubMedCentralCrossRefGoogle Scholar
  67. Ma W, Charles TC, Glick BR (2004) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897PubMedPubMedCentralCrossRefGoogle Scholar
  68. Mayak S, Tirosh T, Glick BR (2004) Plant growth promoting bacteria that confer resistance in tomato to salt stress. Plant Physiol Biochem 42:565–572PubMedCrossRefGoogle Scholar
  69. Middleton PH, Jakab J, Penmetsa RV, Starker CG, Doll J, Kalo P, Prabhu R, Marsh JF, Mitra RM, Kereszt A, Dudas B, Bosch KV, Long SR, Cook DR, Kiss GB, Oldroyda GED (2007) An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction. Plant Cell 19:1221–1234PubMedPubMedCentralCrossRefGoogle Scholar
  70. Musarrat J, Al Khedhairy AA, Al-Arifi S, Khan MS (2009) Role of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium-legume symbiosis. In: Khan MS, Zaidi A, Musarat J (eds) Microbial strategies for crop improvement. Springer-Verleg, Berlin, pp 63–83CrossRefGoogle Scholar
  71. Nadeem SM, Ahmad M, Naveed M, Imran M, Zahir ZA, Crowley DE (2016) Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. Arch Microbiol 198:379–387PubMedCrossRefGoogle Scholar
  72. Nadeem SM, Imran M, Naveed M, Khan MY, Ahmad M, Zahir ZA, Crowley DE (2017) Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions. J Sci Food Agric. doi:10.1002/jsfa.8393
  73. Nagata M, Suzuki A (2014) Effects of phytohormones on nodulation and nitrogen fixation in leguminous plants. In: Ohyama T (ed) Agricultural and biological sciences: advances in biology and ecology of nitrogen fixation. InTech, pp 111–128Google Scholar
  74. Nascimento FX, Brigido C, Glick BR, Oliveira S (2012) ACC deaminase genes are conserved among Mesorhizobium species able to nodulate the same host plant. FEMS Microbiol Lett 336:26–37PubMedCrossRefGoogle Scholar
  75. Nascimento FX, Rossi MJ, Soares CRFS, McConkey BJ, Glick BR (2014) New insights into 1-aminocyclopropane 1carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS One 9:99168CrossRefGoogle Scholar
  76. Nascimento FX, Brígido C, Glick BR, Rossi MJ (2016) The role of rhizobial ACC deaminase in the nodulation process of leguminous plants. Int J Agron 2016:1369472. 9pCrossRefGoogle Scholar
  77. Nukui N, Ezura H, Yohsshi K, Yasuta T, Minamisawa K (2000) Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol 41:893–897Google Scholar
  78. Nukui N, Ezura H, Minamisawa K (2004) Transgenic Lotus japonicus with an ethylene receptor gene Cm-ERS1/H70A enhances formation of infection threads and nodule primordia. Plant Cell Physiol 45:427–435PubMedCrossRefGoogle Scholar
  79. Nukui N, Minamisawa K, Ayabe SI, Aoki T (2006) Expression of the 1-aminocyclopropane-1-carboxylate deaminase gene requires symbiotic nitrogen fixing regulator gene nifA2 in Mesorhizobium loti MAFF303099. Appl Environ Microbiol 72:4964–4969PubMedPubMedCentralCrossRefGoogle Scholar
  80. Okamoto S, Ohnishi E, Sato S, Takahashi H, Nakazono M, Tabata S, Kawaguchi M (2009) Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation. Plant Cell Physiol 50:67–77PubMedCrossRefGoogle Scholar
  81. Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546PubMedCrossRefGoogle Scholar
  82. Oldroyd GED, Engstrom EM, Long SR (2001) Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13:1835–1849PubMedPubMedCentralCrossRefGoogle Scholar
  83. Ooki Y, Banba M, Yano K, Maruya J, Sato S, Tabata S, Hata S (2005) Characterization of the Lotus japonicus symbiotic mutant lot1 that shows a reduced nodule number and distorted trichomes. Plant Physiol 137:1261–1271Google Scholar
  84. Owens LD, Thompson JF, Fennessy PV (1972) Dihydrorhizobitoxine, a new ether amino acid from Rhizobium japonicum. J Chem Soc Chem Commun 1972:715CrossRefGoogle Scholar
  85. Parker MA, Peters NK (2001) Rhizobitoxine production and symbiotic compatibility of Bradyrhizobium from Asian and North American lineages of Amphicarpaea. Can J Microbiol 47:1–6CrossRefGoogle Scholar
  86. Patrick A, Gusti A, Cheminant S, Alioua M, Dhondt S, Coppens F, Beemster GTS, Genschik P (2009) Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr Biol 19:1188–1193CrossRefGoogle Scholar
  87. Penmetsa RV, Frugoli JA, Smith LS, Long SR (2003) Dual genetic pathways controlling nodule number in Medicago truncatula. Plant Physiol 131:998–1008Google Scholar
  88. Penrose DM, Glick BR (2001) Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC-deaminase containing plant growth promoting bacteria. Can J Microbiol 47:368–372PubMedCrossRefGoogle Scholar
  89. Peters NK, Crist-Esters DK (1989) Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol 91:690–693PubMedPubMedCentralCrossRefGoogle Scholar
  90. Prakamhang J, Tittabutr P, Boonkerd N, Teamtisong K, Uchiumi T, Abe M, Teaumroong N (2015) Proposed some interactions at molecular level of PGPR coinoculated with Bradyrhizobium diazoefficiens USDA110 and B. japonicum THA6 on soybean symbiosis and its potential of field application. Appl Soil Ecol 85:38–49CrossRefGoogle Scholar
  91. Prayitno J, Mathesius U (2010) Differential regulation of the nodulation zone by silver ions, L-α-(2-amino-ethoxyvinyl)-glycine, and the skl mutation in Medicago truncatula. HAYATI J Biosci 17:15–20CrossRefGoogle Scholar
  92. Prayitno J, Rolfe BG, Mathesius U (2006) The ethylene-insensitive sickle mutant of Medicago truncatula shows altered auxin transport regulation during nodulation. Plant Physiol 142:168–180PubMedPubMedCentralCrossRefGoogle Scholar
  93. Prigent-Combaret C, Blaha D, Pothier JF, Vial L, Poirier M-A et al (2008) Physical organization and phylogenetic analysis of acdR as leucine-responsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acdS in phytobeneficial Azospirillum lipoferum 4B and other Proteobacteria. FEMS Microbiol Ecol 65:202–219PubMedCrossRefGoogle Scholar
  94. Reid DE, Ferguson BJ, Gresshoff PM (2011) Inoculation-and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. Mol Plant Microb Interact 24:606–618CrossRefGoogle Scholar
  95. Saleem M, Arshad M, Hussain S, Bhatti A (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC-deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648PubMedCrossRefGoogle Scholar
  96. Schmidt JS, Harper JE, Hoffman TK, Bent AF (1999) Regulation of soybean nodulation independent of ethylene signalling. Plant Physiol 119:951–959PubMedPubMedCentralCrossRefGoogle Scholar
  97. Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.) Lett Appl Microbiol 42:155–159PubMedCrossRefGoogle Scholar
  98. Shaharoona B, Arshad M, Khalid A (2007) Differential response of etiolated pea seedling to 1-aminocyclopropane-1-carboxylate and/or l-methionine utilizing rhizobacteria. J Micrbiol 45:15–20Google Scholar
  99. Shaharoona B, Imran M, Arshad M, Khalid A (2011) Manipulation of ethylene synthesis in roots through bacterial ACC deaminase for improving nodulation in legumes. Crit Rev Plant Sci 30(3):279–291CrossRefGoogle Scholar
  100. Shahzad MS, Khalid A, Arshad M, Khalid M, Mehboob I (2008) Integrated use of plant growth promoting bacteria and P-enriched compost for improving growth, yield and nodulation of chickpea. Pak J Bot 40:1735–1144Google Scholar
  101. Shahzad SM, Khalid A, Arshad M, Tahir J, Mahmood T (2010) Improving nodulation, growth and yield of Cicer arietinum L. through bacterial ACC-deaminase induced changes in root architecture. Eur J Soil Biol 46:342–347CrossRefGoogle Scholar
  102. Shahzad SM, Arif MS, Riaz M, Iqbal Z, Ashraf M (2013) PGPR with varied ACC-deaminase activity induced different growth and yield response in maize (Zea mays L.) under fertilized conditions. Eur J Soil Biol 57:27–34CrossRefGoogle Scholar
  103. Siddikee MA, Glick BR, Chauhan PS, Yim WJ, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434PubMedCrossRefGoogle Scholar
  104. Singh NK, Patel DB (2016) Performance of fenugreek bioinoculated with Rhizobium meliloti strains under semi-arid condition. J Environ Biol 37:31PubMedGoogle Scholar
  105. Slater SC, Goldman BS, Goodner B, Setubal JC, Farrand SK, Nester EW, Burr TJ, Banta L, Dickerman AW, Paulsen I, Otten L (2009) Genome sequences of three Agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J Bacteriol 191:2501–2511PubMedPubMedCentralCrossRefGoogle Scholar
  106. Stepanova AN, Alonso JM (2009) Ethylene signaling and response: where different regulatory modules meet. Curr Opin Plant Biol 12:548–555PubMedCrossRefGoogle Scholar
  107. Subramanian P, Kim K, Krishnamoorthy R, Sundaram S, Sa T (2015) Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with Bradyrhizobium japonicum MN110. Plant Growth Regul 76:327–332CrossRefGoogle Scholar
  108. Suganuma N, Yamauchi H, Yamamoto K (1995) Enhanced production of ethylene by soybean roots after inoculation with Bradyrhizobium japonicum. Plant Sci 111:163–168CrossRefGoogle Scholar
  109. Sugawara M, Okazaki S, Nukui N, Ezura H, Mitsui H, Minamisawa K (2006) Rhizobitoxine modulates plant microbe interactions by ethylene inhibition. Biotechnol Adv 24:382–388PubMedCrossRefGoogle Scholar
  110. Sun J, Cardoza V, Mitchell DM, Bright L, Oldroyd G, Harris JM (2006) Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant J 46:961–970PubMedCrossRefGoogle Scholar
  111. Tamimi SM, Timko MP (2003) Effects of ethylene and inhibitors of ethylene synthesis and action on nodulation in common bean (Phaseolus vulgaris L.) Plant Soil 257:125–131CrossRefGoogle Scholar
  112. Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2006) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Sci Mag 315:104–107Google Scholar
  113. Tittabutr P, Awaya JD, Li QX, Borthakur D (2008) The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala. Syst Appl Microbiol 31:141–150PubMedCrossRefGoogle Scholar
  114. Tittabutr P, Sripakdi S, Boonkerd N, Tanthanuch W, Minamisawa K, Teaumroong N (2015) Possible role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity of Sinorhizobium sp. BL3 on symbiosis with mung bean and determinate nodule senescence. Microbes Environ 30:310PubMedPubMedCentralCrossRefGoogle Scholar
  115. Truchet G, Roche P, Lerouge P, Vasse J, Camut S, De Billy F, Prome JC, Dénarié J (1991) Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351:670–673CrossRefGoogle Scholar
  116. Uchiumi T, Oowada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata S, Yokoyama T, Tejima T, Saeki K, Oomori H, Hayashi M, Maekawa T, Sriprang R, Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki A, Shimoda S, Sioya K, Abe M, Minamisawa K (2004) Expression islands clustered on symbiosis island of Mesorhizobium loti genome. J Bacteriol 186:2439–2448PubMedPubMedCentralCrossRefGoogle Scholar
  117. Ullah S, Raza MS, Imran M, Azeem M, Awais M, Bilal MS, Arshad M (2016a) Plant growth promoting rhizobacteria amended with mesorhizobium ciceri inoculation effect on nodulation and growth of chickpea (Cicer arietinum L.) Am Res Thoughts 3:3408–3420Google Scholar
  118. Ullah U, Ashraf M, Shehzad SM, Siddiqui AR, Piracha MA, Suleman M (2016b) Growth behavior of tomato (Solanum lycopersicum) under drought stress in the presence of silicon and plant growth promoting rhizobacteria. Soil Environ 35:65–75Google Scholar
  119. Valverde C, Wall LG (2005) Ethylene modulates the susceptibility of the root for nodulation in actinorhizal Discaria trinervis. Physiol Planta 124:121–131CrossRefGoogle Scholar
  120. Van Spronsen PC, Van Brussel AA, Kijne JW (1995) Nod factors produced by Rhizobium leguminosarum biovar viciae induce ethylene-related changes in root cortical cells of Vicia sativa ssp. nigra. Eur J Cell Biol 68:463–469PubMedGoogle Scholar
  121. van Workum WAT, Van Brussel AAN, Tak T, Wijffelman CA, Kijne WJ (1995) Ethylene prevents nodulation of Vicia sativa ssp. nigra by exopolysaccharides deficient mutants of Rhizobium leguminosarum bv viciae. Mol Plant Microbe Interact 8:278–285CrossRefGoogle Scholar
  122. Vernie T, Moreau S, de Billy F, Plet J, Combier J-P, Rogers C, Vernie GO (2008) Factor involved in the control of nodule number and differentiation in Medicago truncatula. Plant Cell 20:2696–2713PubMedPubMedCentralCrossRefGoogle Scholar
  123. Vijayan R, Palaniappan P, Tongmin SA, Padmanaban E, Natesan M (2013) Rhizobitoxine enhances nodulation by inhibiting ethylene synthesis of Bradyrhizobium elkanii from Lespedeza species: validation by homology modeling and molecular docking study. World. J Pharm Pharm Sci 2:4079–4094Google Scholar
  124. Xie ZP, Staehelin C, Wiemken A, Bolle T (1996) Ethylene responsiveness of soybean cultivars characterized by leaf senescence, chitinase induction and nodulation. J Plant Physiol 149:690–694CrossRefGoogle Scholar
  125. Xiong K, Fuhrmann JJ (1996) Comparison of rhizobitoxine-induced inhibition of β-cystathionase from different bradyrhizobia and soybean genotypes. Plant Soil 186:53–61CrossRefGoogle Scholar
  126. Yoong FY, O’Brien LK, Truco MJ, Huo H, Sideman R, Hayes R, Michelmore RW, Bradford KJ (2016) Genetic variation for thermotolerance in lettuce seed germination is associated with temperature-sensitive regulation of ethylene response factor1 (ERF1). Plant Physiol 170:472–488PubMedCrossRefGoogle Scholar
  127. Young JPW, Crossman LC, Johnston AWB et al (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34PubMedPubMedCentralCrossRefGoogle Scholar
  128. Yuhashi KI, Ichikawa N, Ezuura H, Akao S, Minakawa Y, Nukui N, Yasuta T, Minamisawa K (2000) Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Appl Environ Microbiol 66:2658–2663PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zaat SA, Van Brussel AA, Tak T, Lugtenberg BJ, Kijne JW (1989) The ethylene inhibitor aminoethoxyvinylglycine restores normal nodulation by Rhizobium leguminosarum biovar Viciaeon Vicia sativa ssp. nigra by suppressing the thick and short roots phenotype. Planta 177:141–150PubMedCrossRefGoogle Scholar
  130. Zafar-ul-Hye M, Ahmad M, Shahzad SM (2013) Synergistic effect of rhizobia and plant growth promoting rhizobacteria on the growth and nodulation of lentil seedlings under axenic conditions. Soil Environ 32:79–86Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Azeem Khalid
    • 1
  • Zulfiqar Ahmad
    • 1
  • Shahid Mahmood
    • 1
  • Tariq Mahmood
    • 1
  • Muhammad Imran
    • 2
  1. 1.Department of Environmental SciencesPMAS Arid Agriculture UniversityRawalpindiPakistan
  2. 2.Department of Soil ScienceMuhammad Nawaz Shareef University of AgricultureMultanPakistan

Personalised recommendations