Advertisement

Competitive Detector of Changes with a Statistical Test

  • Leszek J. Chmielewski
  • Konrad Furmańczyk
  • Arkadiusz Orłowski
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 578)

Abstract

The detector of jumps or changes in the function value and its derivative designed with the use of the concept of competing approximators is revisited. The previously defined condition for the existence of a jump in the function value is extended by introducing a statistical test of significance. This extension makes it possible to eliminate some false positive detections which appeared in the previously obtained results. The features of the extended detector are demonstrated on some artificial and real-life data.

Keywords

Competitive detector Function change Statistical test 

References

  1. 1.
    Basu, M.: Gaussian-based edge-detection methods: a survey. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 32(3), 252–260 (2002). http://dx.doi.org/10.1109/TSMCC.2002.804448 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bhardwaj, S., Mittal, A.: A survey on various edge detector techniques. Procedia Technol. 4, 220–226 (2012). http://dx.doi.org/10.1016/j.protcy.2012.05.033 CrossRefGoogle Scholar
  3. 3.
    Chmielewski, L.: The concept of a competitive step and roof edge detector. Mach. Graph. Vis. 5(1–2), 147–156 (1996)Google Scholar
  4. 4.
    Chmielewski, L.: Failure of the 2D version of the step and roof edge detector derived from a competitive filter, Report of the Division of Optical and Computer Methods in Mechanics, IFTR PAS, December 1997Google Scholar
  5. 5.
    Chmielewski, L.J., Orłowski, A.: Detecting changes with the robust competitive detector. In: Alexandre, L.A., Sánchez, J.S., Rodrigues, J.M.F. (eds.) Proceedings of the 8th Iberian Conference on Pattern Recognition and Image Analysis IbPRIA 2017. LNCS, vol. 10255. Springer, Faro, Portugal, 20–23 Jun 2017. doi: 10.1007/978-3-319-58838-4_39
  6. 6.
    Furmańczyk, K., Jaworski, S.: Large parametric change-point detection by a V-box control chart. Sequential Anal. 35(2), 254–264 (2016). http://dx.doi.org/10.1080/07474946.2016.1165548 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 34(3), 334–352 (2004). http://dx.doi.org/10.1109/TSMCC.2004.829274 CrossRefGoogle Scholar
  8. 8.
    Jaworski, S., Furmańczyk, K.: On the choice of parameters of change-point detection with application to stock exchange data. Quant. Methods Econ. 12(1), 87–96 (2011)Google Scholar
  9. 9.
    Maini, R., Aggarwal, H.: Study and comparison of various image edge detection techniques. Int. J. Image Process. (IJIP) 3(1), 1–11 (2009)Google Scholar
  10. 10.
    Niedźwiecki, M., Sethares, W.: New filtering algorithms based on the concept of competitive smoothing. In: Proceedings of the 23rd International Symposium on Stochastic Systems and their Applications, pp. 129–132. Osaka (1991)Google Scholar
  11. 11.
    Niedźwiecki, M., Suchomski, P.: On a new class of edge-preserving filters for noise rejection from images. Mach. Graph. Vis. 1–2(3), 385–392 (1994)zbMATHGoogle Scholar
  12. 12.
    Räty, T.D.: Survey on contemporary remote surveillance systems for public safety. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 40(5), 493–515 (2010). http://dx.doi.org/10.1109/TSMCC.2010.2042446 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Leszek J. Chmielewski
    • 1
  • Konrad Furmańczyk
    • 1
  • Arkadiusz Orłowski
    • 1
  1. 1.Faculty of Applied Informatics and Mathematics – WZIMWarsaw University of Life Sciences – SGGWWarsawPoland

Personalised recommendations