A SpiNNaker Application: Design, Implementation and Validation of SCPGs

  • Brayan Cuevas-Arteaga
  • Juan Pedro Dominguez-MoralesEmail author
  • Horacio Rostro-Gonzalez
  • Andres Espinal
  • Angel F. Jimenez-Fernandez
  • Francisco Gomez-Rodriguez
  • Alejandro Linares-Barranco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10305)


In this paper, we present the numerical results of the implementation of a Spiking Central Pattern Generator (SCPG) on a SpiNNaker board. The SCPG is a network of current-based leaky integrate-and-fire (LIF) neurons, which generates periodic spike trains that correspond to different locomotion gaits (i.e. walk, trot, run). To generate such patterns, the SCPG has been configured with different topologies, and its parameters have been experimentally estimated. To validate our designs, we have implemented them on the SpiNNaker board using PyNN and we have embedded it on a hexapod robot. The system includes a Dynamic Vision Sensor system able to command a pattern to the robot depending on the frequency of the events fired. The more activity the DVS produces, the faster that the pattern that is commanded will be.


SCPGs Legged robots locomotion SpiNNaker Spiking neurons Hardware based implementations 



This work is partially supported by the Spanish government grant (with support from the European Regional Development Fund) COFNET (TEC2016-77785-P). Also, this work has been supported by the Mexican government through the CONACYT project “Aplicación de la Neurociencia Computacional en el Desarrollo de Sistemas Roboticos Biologicamente Inspirados” (269798). The work of Juan P. Dominguez-Morales was supported by a Formación de Personal Universitario Scholarship from the Spanish Ministry of Education, Culture and Sport.


  1. 1.
    Wu, Q., Liu, C., Zhang, J., Chen, Q.: Survey of locomotion control of legged robots inspired by biological concept. Sci. China Ser. F: Inf. Sci. 52(10), 1715–1729 (2009)CrossRefzbMATHGoogle Scholar
  2. 2.
    Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)CrossRefGoogle Scholar
  3. 3.
    Arena, P.: The central pattern generator: a paradigm for artificial locomotion. Soft. Comput. 4(4), 251–266 (2000)CrossRefzbMATHGoogle Scholar
  4. 4.
    MacKay-Lyons, M.: Central pattern generation of locomotion: a review of the evidence. Phys. Ther. 82(1), 69–83 (2002)CrossRefGoogle Scholar
  5. 5.
    Yu, J., Tan, M., Chen, J., Zhang, J.: A survey on CPG-inspired control models and system implementation. IEEE Trans. Neural Netw. Learn. Syst. 25(3), 441–456 (2014)CrossRefGoogle Scholar
  6. 6.
    Lewis, M.A., Tenore, F., Etienne-Cummings, R.: CPG design using inhibitory networks. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, pp. 3682–3687. IEEE (2005)Google Scholar
  7. 7.
    Russell, A., Orchard, G., Etienne-Cummings, R.: Configuring of spiking central pattern generator networks for bipedal walking using genetic algorthms. In: IEEE International Symposium on Circuits and Systems, ISCAS 2007, pp. 1525–1528. IEEE (2007)Google Scholar
  8. 8.
    Espinal, A., Rostro-Gonzalez, H., Carpio, M., et al.: Quadrupedal robot locomotion: a biologically inspired approach and its hardware implementation. Comput. Intell. Neurosci. 2016, Article ID 5615618, 13 p. (2016). doi: 10.1155/2016/5615618
  9. 9.
    Rostro-Gonzalez, H., Cerna-Garcia, P.A., Trejo-Caballero, G., Garcia-Capulin, C.H., Ibarra-Manzano, M.A., Avina-Cervantes, J.G., Torres-Huitzil, C.: A CPG system based on spiking neurons for hexapod robot locomotion. Neurocomputing 170, 47–54 (2015)CrossRefGoogle Scholar
  10. 10.
    Espinal, A., Rostro-Gonzalez, H., Carpio, M., Guerra-Hernandez, E.I., Ornelas-Rodriguez, M., Sotelo-Figueroa, M.: Design of spiking central pattern generators for multiple locomotion gaits in hexapod robots by Christiansen grammar evolution. Front. Neurorobotics 10, 6 (2016). doi: 10.3389/fnbot.2016.00006
  11. 11.
    Maass, W.: Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10(9), 1659–1671 (1997)CrossRefGoogle Scholar
  12. 12.
    Grabowska, M., Godlewska, E., Schmidt, J., Daun-Gruhn, S.: Quadrupedal gaits in hexapod animals inter-leg coordination in free-walking adult stick insects. J. Exp. Biol. 215(24), 4255–4266 (2012).
  13. 13.
    Soula, H., Beslon, G., Mazet, O.: Spontaneous dynamics of asymmetric random recurrent spiking neural networks. Neural Comput. 18(1), 60–79 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Abbott, L.F.: Lapicques introduction of the integrate-and-fire model neuron (1907). Brain Res. Bull. 50(5), 303–304 (1999)CrossRefGoogle Scholar
  15. 15.
    Davison, A., Brderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., Yger, P.: PyNN: a common interface for neuronal network simulators. Front. Neuroinf. 2, 11 (2009)Google Scholar
  16. 16.
    Painkras, E., Plana, L.A., Garside, J., Temple, S., Galluppi, F., Patterson, C., Lester, D.R., Brown, A.D., Furber, S.B.: SpiNNaker: a 1-w 18-core system-on-chip for massively-parallel neural network simulation. IEEE J. Solid-State Circ. 48(8), 1943–1953 (2013)CrossRefGoogle Scholar
  17. 17.
    Advanced Processor Technologies Research Group: Spinnaker home page. Accessed 22 Jan 2016
  18. 18.
    Dominguez-Morales, J.P., Jimenez-Fernandez, A., Rios-Navarro, A., Cerezuela-Escudero, E., Gutierrez-Galan, D., Dominguez-Morales, M.J., Jimenez-Moreno, G.: Multilayer spiking neural network for audio samples classification using SpiNNaker. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 45–53. Springer, Cham (2016). doi: 10.1007/978-3-319-44778-0_6 CrossRefGoogle Scholar
  19. 19.
    Rios-Navarro, A., Dominguez-Morales, J.P., Tapiador-Morales, R., Dominguez-Morales, M., Jimenez-Fernandez, A., Linares-Barranco, A.: A sensor fusion horse gait classification by a spiking neural network on SpiNNaker. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 36–44. Springer, Cham (2016). doi: 10.1007/978-3-319-44778-0_5 CrossRefGoogle Scholar
  20. 20.
    Lichtsteiner, P., Posch, C., Delbruck, T.: A \(128 \times 128\) 120 dB 15 \(\mu \)s latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circ. 43(2), 566–576 (2008)CrossRefGoogle Scholar
  21. 21.
    Serrano-Gotarredona, R., Oster, M., Lichtsteiner, P., Linares-Barranco, A., Paz-Vicente, R., Gómez-Rodríguez, F., Camuñas-Mesa, L., Berner, R., Rivas-Pérez, M., Delbruck, T., et al.: CAVIAR: A 45k neuron, 5M synapse, 12G connects/s AER hardware sensory-processing-learning-actuating system for high-speed visual object recognition and tracking. IEEE Trans. Neural Netw. 20(9), 1417–1438 (2009)CrossRefGoogle Scholar
  22. 22.
    Jiménez-Fernandez, A., Fuentes-del Bosh, J.L., Paz-Vicente, R., Linares-Barranco, A., Jiménez, G.: Neuro-inspired system for real-time vision sensor tilt correction. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1394–1397. IEEE (2010)Google Scholar
  23. 23.
    Linares-Barranco, A., Gómez-Rodríguez, F., Villanueva, V., Longinotti, L., Delbrück, T.: A USB3. 0 FPGA event-based filtering and tracking framework for dynamic vision sensors. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2417–2420. IEEE (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Brayan Cuevas-Arteaga
    • 1
  • Juan Pedro Dominguez-Morales
    • 2
    Email author
  • Horacio Rostro-Gonzalez
    • 1
  • Andres Espinal
    • 3
  • Angel F. Jimenez-Fernandez
    • 2
  • Francisco Gomez-Rodriguez
    • 2
  • Alejandro Linares-Barranco
    • 2
  1. 1.Department of ElectronicsDICIS-University of GuanajuatoSalamancaMexico
  2. 2.Robotic and Technology of Computers Lab.University of SevilleSevillaSpain
  3. 3.Department of Organizational StudiesDCEA-University of GuanajuatoGuanajuatoMexico

Personalised recommendations