Advertisement

Visual SLAM with a RGB-D Camera on a Quadrotor UAV Using on-Board Processing

  • Wilbert G. Aguilar
  • Guillermo A. Rodríguez
  • Leandro Álvarez
  • Sebastián Sandoval
  • Fernando Quisaguano
  • Alex Limaico
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10306)

Abstract

In this article, we present a high accuracy system for real-time localization and mapping using a RGB-D camera. With the use the RGB-D sensor Microsoft Kinect and the small and powerful computer Intel Stick Core M3 Processor, our system can run the computation and sensing required for SLAM on-board the UAV, removing the dependence on unreliable wireless communication. We use visual odometry, loop closure and graph optimization to achieve this purpose. Our approach is able to perform accurate and efficient on-board SLAM by analyzing data and maps generated on several tests of the system.

Keywords

SLAM RGB-D Loop closure detection Graph optimization Visual odometry RANSAC UAVs 

Notes

Acknowledgement

This work is part of the projects 2016-PIC-024 and 2016-PIC-025, from the Universidad de las Fuerzas Armadas ESPE, directed by Dr. Wilbert G. Aguilar.

References

  1. 1.
    Aguilar, W.G., Verónica, C., José, P.: Obstacle avoidance based-visual navigation for micro aerial vehicles. Electronics 6(1), 10 (2017)CrossRefGoogle Scholar
  2. 2.
    Aguilar, W.G., Morales, S.: 3D environment mapping using the kinect V2 and path planning based on RRT algorithms. Electronics 5(4), 70 (2016)CrossRefGoogle Scholar
  3. 3.
    Cabras, P., Rosell, J., Pérez, A., Aguilar, W.G., Rosell, A.: Haptic-based navigation for the virtual bronchoscopy. In: 18th IFAC World Congress, Milano, Italy (2011)Google Scholar
  4. 4.
    Aguilar, W.G., Angulo, C., Costa, R., Molina, L.: Control autónomo de cuadricópteros para seguimiento de trayectorias. In: IX Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2014)Google Scholar
  5. 5.
    Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: Visual odometry and mapping for autonomous flight using an RGB-D camera. In: International Symposium on Robotics Research (ISRR) (2011)Google Scholar
  6. 6.
    Mur-Artal, R., Montiel, J., Tardo, J.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)CrossRefGoogle Scholar
  7. 7.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment — a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). doi: 10.1007/3-540-44480-7_21 CrossRefGoogle Scholar
  8. 8.
    Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). doi: 10.1007/978-3-319-10605-2_54 Google Scholar
  9. 9.
    Kohlbrecher, S., von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (2011)Google Scholar
  10. 10.
    Whelan, T., Kaess, M., Leonard, J., McDonald, J.: Deformation based loop closure for large scale dense RGB-D SLAM. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)Google Scholar
  11. 11.
    Nister, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Computer Vision and Pattern Recognition, pp. 652–659 (2004)Google Scholar
  12. 12.
    Konolige, K., Agrawal, M., Sola, J.: Large-scale visual odometry for rough terrain. In: International Symposium Robotics Research (2007)Google Scholar
  13. 13.
    Kerl, C., Sturm, J., Cremers, D.: Dense visual slam for RGB-D cameras. In: Proceedings of the International Conference on Intelligent Robot Systems (IROS) (2013)Google Scholar
  14. 14.
    Michaud, M., Labbe, F.: Appearance-based loop closure detection for online large-scale and long-term operation. IEEE Trans. Robot. 29(3), 734–745 (2013)CrossRefGoogle Scholar
  15. 15.
    Michaud, M., Labbe, F.: Online global loop closure detection for large-scale multi-session graph-based SLAM. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2661–2666 (2014)Google Scholar
  16. 16.
    Stühmer, J., Gumhold, S., Cremers, D.: Real-time dense geometry from a handheld camera. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 11–20. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15986-2_2 CrossRefGoogle Scholar
  17. 17.
    Aguilar, W.G., Angulo, C.: Estabilización de vídeo en micro vehículos aéreos y su aplicación en la detección de caras. In: IX Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2014)Google Scholar
  18. 18.
    Aguilar, W.G., Angulo, C.: Estabilización robusta de vídeo basada en diferencia de nivel de gris. In: VIII Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2013)Google Scholar
  19. 19.
    Aguilar, W.G., Angulo, C.: Compensación y aprendizaje de efectos generados en la imagen durante el desplazamiento de un robot. In: X Simposio CEA de Ingeniería de Control, Barcelona, Spain (2012)Google Scholar
  20. 20.
    Aguilar, W.G., Angulo, C.: Compensación de los efectos generados en la imagen por el control de navegación del robot Aibo ERS 7. In: VII Congreso de Ciencia y Tecnología ESPE, Sangolquí, Ecuador (2012)Google Scholar
  21. 21.
    Thrun, S.: Robotic mapping: a survey. In: Lakemeyer, G., Neberl, B. (eds.) Exploring Artificial Intelligence in the New Millennium. Morgan Kaufmann, San Francisco (2003)Google Scholar
  22. 22.
    Grisetti, G., Grzonka, S., Stachniss, C., Pfaff, P., Burgard, W.: Efficient estimation of accurate maximum likelihood maps in 3D. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS) (2007)Google Scholar
  23. 23.
    Dellaert, F.: Square root SAM. In: Proceedings of Robotics: Science and Systems (RSS), pp. 177–184 (2005)Google Scholar
  24. 24.
    Kaess, M., Ranganathan, A., Dellaert, F.: iSAM: incremental smoothing and mapping. IEEE Trans. Robot. 24(6), 1365–1378 (2008)CrossRefGoogle Scholar
  25. 25.
    Jin, H., Favaro, P., Soatto, S.: Real-time 3-D motion and structure of point features: front-end system for vision-based control and interaction. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2000)Google Scholar
  26. 26.
    Murray, G., Klein, D.: Parallel tracking and mapping for small AR workspaces. In: Proceedings of IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR) (2007)Google Scholar
  27. 27.
    Strasdat, H., Montiel, J.M., Davison, A.: Scale drift-aware large scale monocular SLAM. In: Proceedings of Robotics: Science and Systems (2010)Google Scholar
  28. 28.
    Aguilar, W.G., Angulo, C.: Real-time model-based video stabilization for microaerial vehicles. Neural Process. Lett. 43(2), 459–477 (2016)CrossRefGoogle Scholar
  29. 29.
    Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for micro aerial vehicles. EURASIP J. Image Video Process. 1, 1–13 (2014)Google Scholar
  30. 30.
    Aguilar, W.G., Angulo, C.: Robust video stabilization based on motion intention for low-cost micro aerial vehicles. In: 11th International Multi-Conference on Systems, Signals & Devices (SSD), Barcelona, Spain (2014)Google Scholar
  31. 31.
    Zisserman, J., Sivic, A.: Video Google: a text retrieval approach to object matching in videos. In: Proceedings of 9th International Conference on Computer Vision, pp. 1470–1478 (2003)Google Scholar
  32. 32.
    Botterill, T., Mills, S., Green, R.: Bag-of-words-driven, single-camera simultaneous localization and mapping. J. Field Robot. 28(2), 204–226 (2011)CrossRefGoogle Scholar
  33. 33.
    Konolige, K., Bowman, J., Chen, J., Mihelich, P., Calonder, M., Lepetit, V., Fua, P.: View-based maps. Int. J. Robot. Res. 29(8), 941–957 (2010)CrossRefGoogle Scholar
  34. 34.
    Christensen, H.I., Folkesson, J.: Closing the loop with graphical SLAM. IEEE Trans. Robot. 23(4), 731–741 (2007)CrossRefGoogle Scholar
  35. 35.
    Johannsson, H., Kaess, M., Fallon, M., Leonard, J.J.: Temporally scalable visual SLAM using a reduced pose graph. In: RSS Workshop on Long-term Operation of Autonomous Robotic Systems in Changing Environments (2012)Google Scholar
  36. 36.
    Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: a factored solution to the simultaneous localization and mapping problem. In: Proceeding of the National Conference on Artificial Intelligence (AAAI) (2012)Google Scholar
  37. 37.
    Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Trans. Robot. (T-RO) 23, 34–46 (2007)CrossRefGoogle Scholar
  38. 38.
    Weiss, S., Scaramuzza, D., Siegwart, R.: Monocular-SLAM-based navigation for autonomous micro helicopters in GPS-denied environments. J. Field Robot. 28(6), 854–874 (2011)CrossRefGoogle Scholar
  39. 39.
    Tardos, R., Mur-Artal, J.D.: Visual-inertial monocular SLAM with map reuse. IEEE Robot. Autom. Lett. 2, 796–803 (2016)Google Scholar
  40. 40.
    Engelhard, N., Endres, F., Hess, J., Sturm, J., Burgard, W.: Realtime 3D visual SLAM with a hand-held RGB-D camera. In: RGB-D Workshop on 3D Perception in Robotics at the European Robotics Forum (2011)Google Scholar
  41. 41.
    Heng, L., Meier, L., Tanskanen, P., Fraundorfer, F., Pollefeys, M.: Autonomous obstacle avoidance and maneuvering on a vision-guided MAV using on-board processing. In: Proceedings of ICRA, pp. 2472–2477 (2011)Google Scholar
  42. 42.
    Fraundorfer, F., Heng, L., Honegger, D., Lee, G., Meier, L., Tanskanen, P., Pollefeys, M.: Vision-based autonomous mapping and exploration using a quadrotor MAV. In: Intelligent Robots and Systems (IROS) (2012)Google Scholar
  43. 43.
    Audras, C., Comport, A., Meilland, M., Rives, P.: Real-time dense appearance-based SLAM for RGB-D sensors. In: Australasian Conference on Robotics and Automation (2011)Google Scholar
  44. 44.
    Bolles, M.A., Fischler, R.C.: Random sample consensus: a paradigm for model fitting with apphcatlons to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Wilbert G. Aguilar
    • 1
    • 3
    • 4
  • Guillermo A. Rodríguez
    • 2
    • 3
  • Leandro Álvarez
    • 2
    • 3
  • Sebastián Sandoval
    • 2
    • 3
  • Fernando Quisaguano
    • 2
    • 3
  • Alex Limaico
    • 2
    • 3
  1. 1.Dep. Seguridad y DefensaUniversidad de las Fuerzas Armadas ESPESangolquíEcuador
  2. 2.Dep. Eléctrica y ElectrónicaUniversidad de las Fuerzas Armadas ESPESangolquíEcuador
  3. 3.CICTE Research CenterUniversidad de las Fuerzas Armadas ESPESangolquíEcuador
  4. 4.GREC Research GroupUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations