Designing a Crowd Forecasting Tool to Combine Prediction Markets and Real-Time Delphi

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10243)

Abstract

The FAZ.NET-Orakel is a crowd forecasting tool, made available to readers of the German-based Frankfurter Allgemeine Zeitung. Its main component is a prediction market used for forecasting economic indices as well as current political events. A shortcoming of prediction markets is their inability to exchange qualitative information. Therefore, we elaborate the combination of prediction markets with the Real-time Delphi method. We argue that several synergy effects may be achieved by this approach: First, prediction markets can be used to select experts for the Delphi survey. Second, valuable information and debates, which may be of interest, can be collected qualitatively. Third, the gamified approach of the prediction markets can raise commitment to the survey.

References

  1. 1.
    Atanasov, P., Rescober, P., Stone, E., Swift, S.A., Servan-Schreiber, E., Tetlock, P., Ungar, L., Mellers, B.: Distilling the wisdom of crowds: prediction markets vs. prediction polls. Manag. Sci., April 2016. http://dx.doi.org/10.1287/mnsc.2015.2374
  2. 2.
    Buckley, P.: Harnessing the wisdom of crowds: decision spaces for prediction markets. Bus. Horiz. 59(1), 85–94 (2016). http://www.sciencedirect.com/science/article/pii/S0007681315001172 CrossRefGoogle Scholar
  3. 3.
    Chen, W., Li, X., Zeng, D.D.: Simple is beautiful: toward light prediction markets. IEEE Intell. Syst. 30(3), 76–80 (2015). http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7111878 CrossRefGoogle Scholar
  4. 4.
    Graefe, A.: German election forecasting: comparing and combining methods for 2013. Ger. Polit. 24(2), 195–204 (2015). http://dx.doi.org/10.1080/09644008.2015.1024240 CrossRefGoogle Scholar
  5. 5.
    Hayek, F.A.: The use of knowledge in society. Am. Econ. Rev. 35(4), 519–530 (1945)Google Scholar
  6. 6.
    Hevner, A.R.: A three cycle view of design science research. Scand. J. Inf. Syst. 19(2), 4 (2007)Google Scholar
  7. 7.
    Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004). http://www.jstor.org/stable/25148625 Google Scholar
  8. 8.
    Kaye, A.: Learning together apart. In: Kaye, A.R. (ed.) Collaborative Learning Through Computer Conferencing. NATO ASI Series (Series F: Computer and Systems Sciences), vol. 90, pp. 1–24. Springer, Heidelberg (1992). doi:10.1007/978-3-642-77684-7_1 CrossRefGoogle Scholar
  9. 9.
    Klein, M., Garcia, A.C.B.: High-speed idea filtering with the bag of lemons. Decis. Support Syst. 78, 39–50 (2015). http://www.sciencedirect.com/science/article/pii/S0167923615001190 CrossRefGoogle Scholar
  10. 10.
    Kloker, S., Kranz, T.T., Straub, T., Weinhardt, C.: Shouldn’t collaboration be social? - proposal of a social real-time delphi. In: Proceedings of the Second Karlsruhe Service Summit Research Workshop (2016). http://service-summit.ksri.kit.edu/downloads/Session_3B2_KSS_2016_paper_19.pdf
  11. 11.
    Linstone, H.A., Turoff, M.: Introduction. In: The Delphi Method: Techniques and Applications, chap. 1, pp. 3–12. Addison-Wesley Educational Publishers Inc. (2002)Google Scholar
  12. 12.
    Prokesch, T., von der Gracht, H.A., Wohlenberg, H.: Integrating prediction market and delphi methodology into a foresight support system - insights from an online game. Technol. Forecast. Soc. Change 97, 47–64 (2015). http://www.sciencedirect.com/science/article/pii/S0040162514000857 CrossRefGoogle Scholar
  13. 13.
    Scheiner, C.W., Haas, P., Leicht, N., Voigt, K.I.: Accessing knowledge with a game - a meta-analysis of prediction markets (2013)Google Scholar
  14. 14.
    Teschner, F.: Forecasting economic indices: design, performance, and learning in prediction markets. Karlsruhe Institute of Technology (KIT) (2012). http://digbib.ubka.uni-karlsruhe.de/volltexte/1000029512
  15. 15.
    Tetlock, P.E., Mellers, B.A., Scoblic, J.P.: Bringing probability judgments into policy debates via forecasting tournaments. Science 355(6324), 481–483 (2017). http://science.sciencemag.org/content/355/6324/481.abstract CrossRefGoogle Scholar
  16. 16.
    Wagner, C., Back, A.: Group wisdom support systems: aggregating the insights of many trough information technology. Issues Inf. Syst. (IIS) 9(2), 343–350 (2008). http://iacis.org/iis/2008/S2008_992.pdf Google Scholar
  17. 17.
    Welty, G.: Problems of selecting experts for delphi exercises. Acad. Manag. J. 15(1), 121–124 (1972)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Information Management and MarketingKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations