Multispectral Constancy Based on Spectral Adaptation Transform

  • Haris Ahmad KhanEmail author
  • Jean Baptiste Thomas
  • Jon Yngve Hardeberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10270)


The spectral reflectance of an object surface provides valuable information about its characteristics. Reflectance reconstruction from multispectral images is based on certain assumptions. One of these assumptions is that the same illumination is used for system calibration and image acquisition. We propose the novel concept of multispectral constancy, achieved through a spectral adaptation transform, which transforms the sensor data acquired under an unknown illumination to a generic illuminant-independent space. The proposed concept and methods are inspired from the field of computational color constancy. Spectral reflectance is then estimated by using a generic linear calibration. Results of reflectance reconstruction using the proposed concept show that it is efficient, but highly sensitive to the accuracy of illuminant estimation.


Reflectance reconstruction Multispectral constancy Illuminant estimation Spectral adaptation transform 


  1. 1.
    Hardeberg, J.Y.: Acquisition and Reproduction of Color Images: Colorimetric and Multispectral Approaches., Parkland (2001)Google Scholar
  2. 2.
    Connah, D., Hardeberg, J.Y., Westland, S.: Comparison of linear spectral reconstruction methods for multispectral imaging. In: International Conference on Image Processing, ICIP, vol. 3, pp. 1497–1500 (2004)Google Scholar
  3. 3.
    Foster, D.H.: Color constancy. Vis. Res. 51(7), 674–700 (2011)CrossRefGoogle Scholar
  4. 4.
    Fairchild, M.D.: Spectral adaptation. Color Res. Appl. 32(2), 100–112 (2007)CrossRefGoogle Scholar
  5. 5.
    Jiang, J., Liu, D., Gu, J., Süsstrunk, S.: What is the space of spectral sensitivity functions for digital color cameras? In: IEEE Workshop on Applications of Computer Vision (WACV), pp. 168–179, January 2013Google Scholar
  6. 6.
    Finlayson, G.D., Hordley, S., Hubel, P.M.: Recovering device sensitivities with quadratic programming. In: IS&T Sixth Color Imaging Conference: Color Science, Systems and Applications, Scottsdale, Arizona, pp. 90–95 (1998)Google Scholar
  7. 7.
    Wang, X., Thomas, J.-B., Hardeberg, J.Y., Gouton, P.: Multispectral imaging: narrow or wide band filters? J. Int. Colour Assoc. 12, 44–51 (2014)Google Scholar
  8. 8.
    McCamy, C.S., Marcus, H., Davidson, J.G.: A color-rendition chart. J. Appl. Photograph. Eng. 2(3), 95–99 (1976)Google Scholar
  9. 9.
    Thomas, J.-B.: Illuminant estimation from uncalibrated multispectral images. In: Colour and Visual Computing Symposium (CVCS), Gjøvik, Norway, pp. 1–6, August 2015Google Scholar
  10. 10.
    Land, E.H., McCann, J.J.: Lightness and retinex theory. J. Opt. Soc. Am. 61, 1–11 (1971)CrossRefGoogle Scholar
  11. 11.
    van de Weijer, J., Gevers, T.: Color constancy based on the Grey-edge hypothesis. In: IEEE International Conference on Image Processing, vol. 2, p. II–722–5, September 2005Google Scholar
  12. 12.
    van de Weijer, J., Gevers, T., Gijsenij, A.: Edge-based color constancy. IEEE Trans. Image Process. 16, 2207–2214 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Khan, H.A., Thomas, J.-B., Hardeberg, J.Y., Laligant, O.: Illuminant estimation in multispectral imaging. Submitted to a JournalGoogle Scholar
  14. 14.
    von Kries, J.: Influence of adaptation on the effects produced by luminous stimuli. In: MacAdam, D.L. (ed.) Sources of Color Science, pp. 109–119 (1970)Google Scholar
  15. 15.
    Imai, F.H., Berns, R.S.: Spectral estimation using trichromatic digital cameras. In: International Symposium on Multispectral Imaging and Color Reproduction for Digital Archives, pp. 42–49. Chiba University, Chiba (1999)Google Scholar
  16. 16.
    Pratt, W.K., Mancill, C.E.: Spectral estimation techniques for the spectral calibration of a color image scanner. Appl. Opt. 15, 73–75 (1976)CrossRefGoogle Scholar
  17. 17.
    Hernández-Andrés, J., Romero, J., Lee, R.L.: Colorimetric and spectroradiometric characteristics of narrow-field-of-view clear skylight in granada, spain. J. Opt. Soc. Am. A 18, 412–420 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Haris Ahmad Khan
    • 1
    • 2
    Email author
  • Jean Baptiste Thomas
    • 1
    • 2
  • Jon Yngve Hardeberg
    • 1
  1. 1.The Norwegian Colour and Visual Computing LaboratoryNTNU - Norwegian University of Science and TechnologyGjøvikNorway
  2. 2.Le2i, FRE CNRS 2005Univ. Bourgogne Franche-ComtéDijonFrance

Personalised recommendations