Enhancement of Cilia Sub-structures by Multiple Instance Registration and Super-Resolution Reconstruction

  • Amit Suveer
  • Nataša Sladoje
  • Joakim Lindblad
  • Anca Dragomir
  • Ida-Maria Sintorn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10270)


Ultrastructural analysis of cilia cross-sectional images using transmission electron microscopy (TEM) assists the pathologists to diagnose Primary Ciliary Dyskinesia, a genetic disease. The current diagnostic procedure is manual and difficult because of poor signal-to-noise ratio in TEM images. In this paper, we propose an automated multi-step registration approach to register many cilia cross-sectional instances. The novelty of the work is in the utilization of customized weight masks at each registration step to achieve good alignment of the specific cilium regions. Registration is followed by super-resolution reconstruction to enhance the substructural information. Landmarks matching based evaluation of registration results in pixel alignment error of \(2.35\pm 1.82\) pixels, and the subjective analysis of super-resolution reconstructed cilium shows a clear improvement in the visibility of the substructures such as dynein arms, radial spokes, and central pair.


Non-rigid registration Transmission Electron Microscopy Super-resolution Cilia ultrastructures Dynein arms Radial spokes 



This work is supported by the Swedish Innovation Agency through the MedTech4Health program, and the Ministry of Science of the Republic of Serbia through projects ON174008 and III44006 (authors NS and JL).


  1. 1.
    Afzelius, B.A., Dallai, R., Lanzavecchia, S., Bellon, P.L.: Flagellar structure in normal human spermatozoa and in spermatozoa that lack dynein arms. Tissue Cell 27(3), 241–247 (1995)CrossRefGoogle Scholar
  2. 2.
    Bajić, B., Lindblad, J., Sladoje, N.: Restoration of images degraded by signal-dependent noise based on energy minimization: an empirical study. J. Electron. Imaging 25(4), 043020 (2016)CrossRefGoogle Scholar
  3. 3.
    Berkels, B., et al.: Optimized imaging using non-rigid registration. Ultramicroscopy 138, 46–56 (2014)CrossRefGoogle Scholar
  4. 4.
    Carson, J.L., Hu, S.S., Collier, A.M.: Computer- assisted analysis of radial symmetry in human airway epithelial cilia: assessment of congenital ciliary defects in primary ciliary dyskinesia. Ultrastruct. Pathol. 24(3), 169–174 (2000)CrossRefGoogle Scholar
  5. 5.
    Escudier, E., et al.: Computer-assisted analysis helps detect inner dynein arm abnormalities. Am. J. Respir. Crit. Care Med. 166, 1257–1262 (2002)CrossRefGoogle Scholar
  6. 6.
    Jones, L., et al.: Smart align-a new tool for robust non-rigid registration of scanning microscope data. Adv. Struct. Chem. Imaging 1(1), 1 (2015)CrossRefGoogle Scholar
  7. 7.
    Jorge-Peñas, A., et al.: Free form deformation-based image registration improves accuracy of traction force microscopy. PLoS One 10(12), e0144184 (2015)CrossRefGoogle Scholar
  8. 8.
    Lee, S., Wolberg, G., Chwa, K.Y., Shin, S.Y.: Image metamorphosis with scattered feature constraints. IEEE Trans. Vis. Comput. Graph. 2(4), 337–354 (1996)CrossRefGoogle Scholar
  9. 9.
    Lee, S., Wolberg, G., Shin, S.Y.: Scattered data interpolation with multilevel b-splines. IEEE Trans. Vis. Comput. Graph. 3(3), 228–244 (1997)CrossRefGoogle Scholar
  10. 10.
    Lindblad, J., et al.: High-resolution reconstruction by feature distance minimization from multiple views of an object. In: 5th International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 29–34. IEEE, Orleans (2015)Google Scholar
  11. 11.
    Lindblad, J., Sladoje, N.: Linear time distances between fuzzy sets with applications to pattern matching and classification. IEEE Trans. Image Process. 23(1), 126–136 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    O’Toole, E.T., Giddings, T.H., Porter, M.E., Ostrowski, L.E.: Computer-assisted image analysis of human cilia and chlamydomonas flagella reveals both similarities and differences in axoneme structure. Cytoskeleteon (Hoboken) 69(8), 577–590 (2012)CrossRefGoogle Scholar
  13. 13.
    Palm, C., et al.: Interactive computer-assisted approach for evaluation of ultrastructural cilia abnormalities. In: SPIE Medical Imaging. p. 97853N. International Society for Optics and Photonics (2016)Google Scholar
  14. 14.
    Rueckert, D., et al.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  15. 15.
    Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)CrossRefGoogle Scholar
  16. 16.
    Suveer, A., et al.: Automated detection of cilia in low magnification transmission electron microscopy images using template matching. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 386–390. IEEE (2016)Google Scholar
  17. 17.
    Wahba, G.: Spline Models for Observational Data. SIAM, Philadelphia (1990)CrossRefMATHGoogle Scholar
  18. 18.
    Zariwala, M., Knowles, M., Omran, H.: Genetic defects in ciliary structure and function. Annu. Rev. Physiol. 69, 423–450 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Amit Suveer
    • 1
  • Nataša Sladoje
    • 1
    • 2
  • Joakim Lindblad
    • 1
    • 2
  • Anca Dragomir
    • 3
  • Ida-Maria Sintorn
    • 1
    • 4
  1. 1.Centre for Image AnalysisUppsala UniversityUppsalaSweden
  2. 2.Mathematical Institute, Serbian Academy of Sciences and ArtsBelgradeSerbia
  3. 3.Department of Surgical PathologyUppsala University HospitalUppsalaSweden
  4. 4.Vironova ABStockholmSweden

Personalised recommendations