Decoding Gene Expression in 2D and 3D

  • Maxime Bombrun
  • Petter Ranefall
  • Joakim Lindblad
  • Amin Allalou
  • Gabriele Partel
  • Leslie Solorzano
  • Xiaoyan Qian
  • Mats Nilsson
  • Carolina Wählby
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10270)

Abstract

Image-based sequencing of RNA molecules directly in tissue samples provides a unique way of relating spatially varying gene expression to tissue morphology. Despite the fact that tissue samples are typically cut in micrometer thin sections, modern molecular detection methods result in signals so densely packed that optical “slicing” by imaging at multiple focal planes becomes necessary to image all signals. Chromatic aberration, signal crosstalk and low signal to noise ratio further complicates the analysis of multiple sequences in parallel. Here a previous 2D analysis approach for image-based gene decoding was used to show how signal count as well as signal precision is increased when analyzing the data in 3D instead. We corrected the extracted signal measurements for signal crosstalk, and improved the results of both 2D and 3D analysis. We applied our methodologies on a tissue sample imaged in six fluorescent channels during five cycles and seven focal planes, resulting in 210 images. Our methods are able to detect more than 5000 signals representing 140 different expressed genes analyzed and decoded in parallel.

Keywords

2D and 3D signal detection Microscopy based in situ sequencing Image processing & analysis Crosstalk compensation 

References

  1. 1.
    Gurcan, M.N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N.M., Yener, B.: Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2, 147–171 (2009)CrossRefGoogle Scholar
  2. 2.
    Darmanis, S., Sloan, S.A., Zhang, Y., Enge, M., Caneda, C., Shuer, L.M., Gephart, M.G.H., Barres, B.A., Quake, S.R.: A survey of human brain transcriptome diversity at the single cell level. Proc. Nat. Acad. Sci. 112(23), 7285–7290 (2015)CrossRefGoogle Scholar
  3. 3.
    Ke, R., Mignardi, M., Pacureanu, A., Svedlund, J., Botling, J., Wählby, C., Nilsson, M.: In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10(9), 857–860 (2013)CrossRefGoogle Scholar
  4. 4.
    Lee, J.H., Daugharthy, E.R., Scheiman, J., Kalhor, R., Yang, J.L., Ferrante, T.C., Terry, R., Jeanty, S.S., Li, C., Amamoto, R., Peters, D.T., Turczyk, B.M., Marblestone, A.H., Inverso, S.A., Bernard, A., Mali, P., Rios, X., Aach, J., Church, G.M.: Highly multiplexed subcellular RNA sequencing in situ. Science 343(6177), 1360–1363 (2014)CrossRefGoogle Scholar
  5. 5.
    Shah, S., Lubeck, E., Zhou, W., Cai, L.: In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron 92(2), 342–357 (2016)CrossRefGoogle Scholar
  6. 6.
    Pacureanu, A., Ke, R., Mignardi, M., Nilsson, M., Wählby, C.: Image based in situ sequencing for RNA analysis in tissue. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 286–289. IEEE (2014)Google Scholar
  7. 7.
    Ranefall, P., Pacureanu, A., Avenel, C., Carpenter, A.E., Wählby, C.: The giga-pixel challenge: full resolution image analysis without losing the big picture: an open-source approach for multi-scale analysis and visualization of slide-scanner data. In: SSBA 2014, Symposium of the Swedish Society for Automated Image Analysis, Luleå, Sweden (2014)Google Scholar
  8. 8.
    Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., Guertin, D.A., Chang, J.H., Lindquist, R.A., Moffat, J., Golland, P., Sabatini, M.: Cell profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7(10), R100 (2006)CrossRefGoogle Scholar
  9. 9.
    Malpica, N., Ortiz de Solorzano, C., Vaquero, J.J., Santos, A., Vallcorba, I., Garcia-Sagredo, J.M., Pozo, F.D.: Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry 28, 289–297 (1997)CrossRefGoogle Scholar
  10. 10.
    Thevenaz, P., Ruttimann, U.E., Unser, M.: A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7(1), 27–41 (1998)CrossRefGoogle Scholar
  11. 11.
    Ranefall, P., Sadanandan, S.K., Wählby, C.: Fast adaptive local thresholding based on ellipse fit. In: International Symposium on Biomedical Imaging (ISBI 2016), Prague, Czech Republic (2016)Google Scholar
  12. 12.
    Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. Image Process. 15(11), 3531–3539 (2006)CrossRefGoogle Scholar
  13. 13.
    Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid ICP algorithms for surface registration. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)Google Scholar
  14. 14.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar
  15. 15.
    Lee, S., Wolberg, G., Shin, S.Y.: Scattered data interpolation with multilevel B-splines. IEEE Trans. Vis. Comput. Graph. 3(3), 228–244 (1997)CrossRefGoogle Scholar
  16. 16.
    Li, L., Speed, T.P.: An estimate of the crosstalk matrix in four-dye fluorescence-based DNA sequencing. Electrophoresis 20(7), 1433–1442 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Maxime Bombrun
    • 1
  • Petter Ranefall
    • 1
  • Joakim Lindblad
    • 1
  • Amin Allalou
    • 1
  • Gabriele Partel
    • 1
  • Leslie Solorzano
    • 1
  • Xiaoyan Qian
    • 2
  • Mats Nilsson
    • 2
  • Carolina Wählby
    • 1
  1. 1.Division of Visual Information and Interaction, Science for Life Laboratory, Department of Information TechnologyUppsala UniversityUppsalaSweden
  2. 2.Science for Life Laboratory, Department of Biochemistry and BiophysicsStockholm UniversitySolnaSweden

Personalised recommendations