Advertisement

Automatic Segmentation of Abdominal Fat in MRI-Scans, Using Graph-Cuts and Image Derived Energies

  • Anders Nymark Christensen
  • Christian Thode Larsen
  • Camilla Maria Mandrup
  • Martin Bæk Petersen
  • Rasmus Larsen
  • Knut Conradsen
  • Vedrana Andersen Dahl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10270)

Abstract

For many clinical studies changes in the abdominal distribution of fat is an important measure. However, the segmentation of abdominal fat in MRI scans is both difficult and time consuming using manual methods. We present here an automatic and flexible software package, that performs both bias field correction and segmentation of the fat into superficial and deep subcutaneous fat as well as visceral fat with the spinal compartment removed. Assessment when comparing to the gold standard - CT-scans - shows a correlation and bias comparable to manual segmentation. The method is flexible by tuning the image-derived energies used for the segmentation, allowing the method to be applied to other body parts, such as the thighs.

Keywords

Automatic Segmentation Manual Segmentation Bias Field Surface Cost Deep Compartment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Christensen, A.N., Conradsen, K., Larsen, R.: Data Analysis of Medical Images: CT, MRI, Phase Contrast X-ray and PET. Ph.D. thesis (2016)Google Scholar
  3. 3.
    Enevoldsen, L.H., Simonsen, L., Stallknecht, B., Galbo, H., Bülow, J.: In vivo human lipolytic activity in preperitoneal and subdivisions of subcutaneous abdominal adipose tissue. Am. J. Physiol. Endocrinol. Metab. 281(5), E1110–E1114 (2001)Google Scholar
  4. 4.
    Franklin, R.M., Ploutz-Snyder, L., Kanaley, J.A.: Longitudinal changes in abdominal fat distribution with menopause. Metab. Clin. Exp. 58(3), 311–315 (2009)CrossRefGoogle Scholar
  5. 5.
    Fujioka, S., Matsuzawa, Y., Tokunaga, K., Tarui, S.: Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metab. Clin. Exp. 36(1), 54–59 (1987)CrossRefGoogle Scholar
  6. 6.
    Haarbo, J., Gotfredsen, A., Hassager, C., Christiansen, C.: Validation of body composition by dual energy X-ray absorptiometry (DEXA). Clin. Physiol. Funct. Imaging 11, 331–341 (1991). Oxford, EnglandCrossRefGoogle Scholar
  7. 7.
    Kim, Y.J., Lee, S.H., Kim, T.Y., Park, J.Y., Choi, S.H., Kim, K.G.: Body fat assessment method using CT images with separation mask algorithm. J. Digit. Imaging 26(2), 155–162 (2013)CrossRefGoogle Scholar
  8. 8.
    Klopfenstein, B.J., Kim, M.S., Krisky, C.M., Szumowski, J., Rooney, W.D., Purnell, J.Q.: Comparison of 3 T MRI and CT for the measurement of visceral and subcutaneous adipose tissue in humans. Br. J. Radiol. 85(1018), e826–e830 (2012)CrossRefGoogle Scholar
  9. 9.
    Knutsson, H., Andersson, M.: Morphons: segmentation using elastic canvas and paint on priors. In: Proceedings - International Conference on Image Processing ICIP, 2, pp. 1226–1229 (2005)Google Scholar
  10. 10.
    Larsen, C.T., Iglesias, J.E., Leemput, K.: N3 bias field correction explained as a Bayesian modeling method. In: Cardoso, M.J., Simpson, I., Arbel, T., Precup, D., Ribbens, A. (eds.) BAMBI 2014. LNCS, vol. 8677, pp. 1–12. Springer, Cham (2014). doi: 10.1007/978-3-319-12289-2_1 Google Scholar
  11. 11.
    Leinhard, O., Johansson, A., Rydell, J., Smedby, Ö., Nyström, F., Lundberg, P., Borga, M.: Quantitative abdominal fat estimation using MRI. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4 (2008)Google Scholar
  12. 12.
    Li, K., Wu, X., Chen, D.Z., Sonka, M.: Optimal surface segmentation in volumetric images - a graph-theoretic approach. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 119–134 (2006)CrossRefGoogle Scholar
  13. 13.
    Ma, J.: Dixon techniques for water and fat imaging. J. Magn. Reson. Imaging 28(3), 543–558 (2008)CrossRefGoogle Scholar
  14. 14.
    Miyazaki, Y., Glass, L., Triplitt, C., Wajcberg, E., Mandarino, L.J., DeFronzo, R.A.: Abdominal fat distribution and peripheral and hepatic insulin resistance in type 2 diabetes mellitus. Am. J. Physiol. Endocrinol. Metab. 283(6), E1135–E1143 (2002)CrossRefGoogle Scholar
  15. 15.
    Mosbech, T.H., Pilgaard, K., Vaag, A., Larsen, R.: Automatic segmentation of abdominal adipose tissue in MRI. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 501–511. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21227-7_47 CrossRefGoogle Scholar
  16. 16.
    Rosito, G.A., Massaro, J.M., Hoffmann, U., Ruberg, F.L., Mahabadi, A.A., Vasan, R.S., O’Donnell, C.J., Fox, C.S.: Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham heart study. Circulation 117(5), 605–613 (2008)CrossRefGoogle Scholar
  17. 17.
    Seidell, J.C., Bakker, C.J., van der Kooy, K.: Imaging techniques for measuring adipose-tissue distribution-a comparison between computed tomography and 1.5-T magnetic resonance. Am. J. Clin. Nutr. 51(6), 953–957 (1990)Google Scholar
  18. 18.
    Tinggaard, J., Hagen, C., Mouritsen, A., Mieritz, M., Wohlfahrt-Veje, C., Fallentin, E., Larsen, R., Christensen, A., Jensen, R., Juula, A., Maina, K.: Abdominal fat distribution measured by magnetic resonance imaging in 197 children aged 10–15 years – correlation to anthropometry and dual X-ray absorptiometry. In: ESPE Abstracts, pp. 84 P–2–330 (2015)Google Scholar
  19. 19.
    Zhou, A., Murillo, H., Peng, Q.: Novel segmentation method for abdominal fat quantification by MRI. J. Magn. Reson. Imaging 34(4), 852–860 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Anders Nymark Christensen
    • 1
  • Christian Thode Larsen
    • 1
  • Camilla Maria Mandrup
    • 2
  • Martin Bæk Petersen
    • 2
  • Rasmus Larsen
    • 1
  • Knut Conradsen
    • 1
  • Vedrana Andersen Dahl
    • 1
  1. 1.Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKongens LyngbyDenmark
  2. 2.Section of Systems Biology ResearchCopenhagen UniversityCopenhagenDenmark

Personalised recommendations