Advertisement

Roughness Versus Chemistry: Effect of Different Surface Properties on Insect Adhesion

  • Elena V. GorbEmail author
  • Matt W. England
  • Tomoya Sato
  • Makoto Yagihashi
  • Atsushi Hozumi
  • Stanislav N. Gorb
Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 9)

Abstract

In order to study the effect of different surface properties on the attachment ability of seven-spotted ladybird beetles Coccinella septempunctata, traction forces of both male and female beetles were systematically measured on eight types of surface, each with different chemical and topographical properties. Three of these surfaces were smooth with different surface wettabilities, including two types of hydrophobic monolayers, with alkyl- and perfluoroalkyl-terminated functional groups. The third smooth surface was a hydrophobic/oleophilic alkylsilane-derived hybrid film, showing low contact angle hysteresis for water and n-hexadecane. In addition, we also tested three rough surfaces with different roughness values and different wettabilities. Smooth, hydrophilic silicon wafers (Si) and glass surfaces were used as two reference surfaces. The results of traction force tests clearly demonstrated that chemical surface properties, such as static/dynamic dewettability of water and oil caused by specific chemical compositions, had a certain effect on the beetle attachment: hydrophobic and oleophobic substrates tend to reduce the attachment forces. Surface roughness was found to be the dominant factor, strongly affecting the attachment ability of the beetles up to complete diminishing of attachment.

Notes

Acknowledgements

This book chapter is adapted from the publication England, Sato, Yagihashi, Hozumi, Gorb, and Gorb (2016) Surface roughness rather than surface chemistry essentially affects insect adhesion, Beilstein J. Nanotechnol. 7, 1471 (2016). The authors thank Charlotte Bellmann and Ingo Grawe (both Kiel University) for their assistance with the force measurements and Emre Kizilkan (Kiel University) for the introduction into the plasma treatment device. This work was partially supported by CARTRIB Project of The Leverhulme Trust (E.V. Gorb and S.N. Gorb) and JSPS KAKENHI Grant Number JP24120005 (A. Hozumi) in Scientific Research on Innovative Areas “Innovative Materials Engineering Based on Biological Diversity”.

References

  1. 1.
    B. Bhushan, Philos. Trans. R. Soc. Lond. A 367, 1445 (2009)CrossRefGoogle Scholar
  2. 2.
    K. Koch, W. Barthlott, Philos. Trans. R. Soc. Lond. A 367, 1487 (2009)CrossRefGoogle Scholar
  3. 3.
    A. Tuteja et al., MRS Bull. 33, 752 (2008)CrossRefGoogle Scholar
  4. 4.
    T.-S. Wong, T. Sun, L. Feng, J. Aizenberg, MRS Bull. 38, 366 (2013)CrossRefGoogle Scholar
  5. 5.
    N.A. Patankar, Langmuir 20, 8209 (2004)CrossRefGoogle Scholar
  6. 6.
    A. Tuteja et al., Science 318, 1618 (2007)CrossRefGoogle Scholar
  7. 7.
    A. Tuteja et al., Proc. Natl. Acad. Sci. U. S. A. 105, 18200 (2008)CrossRefGoogle Scholar
  8. 8.
    A. Hozumi, T.J. McCarthy, Langmuir 26, 2567 (2010)CrossRefGoogle Scholar
  9. 9.
    T.-S. Wong et al., Nature 477, 443 (2011)CrossRefGoogle Scholar
  10. 10.
    C. Urata, D.F. Cheng, B. Masheder, A. Hozumi, RSC Adv 2, 9805 (2012)CrossRefGoogle Scholar
  11. 11.
    C. Urata, B. Masheder, D.F. Cheng, A. Hozumi, Langmuir 29, 12472 (2013)CrossRefGoogle Scholar
  12. 12.
    C. Urata et al., Langmuir 30, 4049 (2014)CrossRefGoogle Scholar
  13. 13.
    S.S. Latthe, C. Terashima, K. Nakata, A. Fujishima, Molecules 19, 4256 (2014)CrossRefGoogle Scholar
  14. 14.
    D.F. Miranda et al., APL Mater. 2, 056108 (2014)CrossRefGoogle Scholar
  15. 15.
    J.T. Simpson, S.R. Hunter, T. Aytug, Rep. Prog. Phys 78, 086501 (2015)CrossRefGoogle Scholar
  16. 16.
    B. Prüm, R. Seidel, H.F. Bohn, T. Speck, J.R. Soc, Interface 9, 127 (2012)Google Scholar
  17. 17.
    B. Prüm et al., Acta Biomater 9, 6360 (2013)CrossRefGoogle Scholar
  18. 18.
    E.V. Gorb et al., J. Exp. Biol 208, 4651 (2005)CrossRefGoogle Scholar
  19. 19.
    N.E. Stork, Entomol. Exp. Appl 28, 100 (1980)CrossRefGoogle Scholar
  20. 20.
    S.D. Eigenbrode, C. White, M. Rohde, C.J. Simon, Environ. Entomol 27, 902 (1998)CrossRefGoogle Scholar
  21. 21.
    S.D. Eigenbrode, N.N. Kabalo, Entomol. Exp. Appl 91, 125 (1999)CrossRefGoogle Scholar
  22. 22.
    E.V. Gorb, S.N. Gorb, Entomol. Exp. Appl 105, 13 (2002)CrossRefGoogle Scholar
  23. 23.
    E.V. Gorb, N. Hosoda, C. Miksch, S.N. Gorb, Soc. Interface 7, 1571 (2010)CrossRefGoogle Scholar
  24. 24.
    H. Peisker, S.N. Gorb, J. Exp. Biol 213, 3457 (2010)CrossRefGoogle Scholar
  25. 25.
    J. Purtov, E.V. Gorb, M. Steinhart, S.N. Gorb, Appl. Phys. A 111, 183 (2013)CrossRefGoogle Scholar
  26. 26.
    S.N. Gorb et al., Integr. Comp. Biol 42, 1127 (2002)CrossRefGoogle Scholar
  27. 27.
    S. Ishii, Appl. Entomol. Zool 22, 222 (1987)Google Scholar
  28. 28.
    T. Eisner, D.J. Anesnansley, Proc. Natl. Acad. Sci. U. S. A 97, 6568 (2000)CrossRefGoogle Scholar
  29. 29.
    S.N. Gorb, Attachment Devices of Insect Cuticle (Kluwer Academic Publishers, Dordrecht, 2001)Google Scholar
  30. 30.
    W. Federle, M. Riehle, A.S.G. Curtis, R. Full, J. Integr. Comp. Biol 42, 1100 (2002)CrossRefGoogle Scholar
  31. 31.
    W. Vötsch et al., Insect Biochem. Mol. Biol 32, 1605 (2002)CrossRefGoogle Scholar
  32. 32.
    S.F. Geiselhardt et al., J. Insect Physiol 56, 398 (2010)CrossRefGoogle Scholar
  33. 33.
    E. Gorb, S. Gorb, Entomol. Exp. Appl 130, 222 (2009)CrossRefGoogle Scholar
  34. 34.
    N. Hosoda, S.N. Gorb, Proc. R. Soc. Lond. B 279, 4236 (2012)CrossRefGoogle Scholar
  35. 35.
    C. Grohmann, A. Blankenstein, S. Koops, S.N. Gorb, J. Exp. Biol 217, 4213 (2014)CrossRefGoogle Scholar
  36. 36.
    A. Hozumi, K. Ushiyama, H. Sugimura, O. Takai, Langmuir 15, 7600 (1999)CrossRefGoogle Scholar
  37. 37.
    X. Deng, L. Mammen, H.-J. Butt, D. Vollmer, Science 335, 67 (2012)CrossRefGoogle Scholar
  38. 38.
    D. Voigt, J.M. Schuppert, S. Dattinger, S.N. Gorb, J. Insect Physiol 54, 765 (2008)CrossRefGoogle Scholar
  39. 39.
    A.E. Kovalev, A.E. Filippov, S.N. Gorb, J.R. Soc, Interface 11, 20130988 (2013)Google Scholar
  40. 40.
    G. Huber et al., Acta Biomater 3, 607 (2007)CrossRefGoogle Scholar
  41. 41.
    J.O. Wolff, S.N. Gorb, J. Exp. Biol 215, 179 (2012)CrossRefGoogle Scholar
  42. 42.
    A. Peressadko, S.N. Gorb, in First International Industrial Conference Bionik 2004, ed. by I. Boblan, R. Bannasch (VDI, Düsseldorf, 2004)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Elena V. Gorb
    • 1
    Email author
  • Matt W. England
    • 2
  • Tomoya Sato
    • 2
  • Makoto Yagihashi
    • 3
  • Atsushi Hozumi
    • 2
  • Stanislav N. Gorb
    • 4
  1. 1.Department of Functional Morphology and BiomechanicsKiel UniversityKielGermany
  2. 2.National Institute of Advanced Industrial Science and Technology (AIST)NagoyaJapan
  3. 3.Nagoya Municipal Industrial Research InstituteNagoyaJapan
  4. 4.Department of Functional Morphology and Biomechanics, Zoological InstituteKiel UniversityKielGermany

Personalised recommendations